وزارة التعليم العالمي والبحت
العلمي

الحمّبِّ" التّعليميةّ لمادةٌ اجزاء مكائن

العداد : مدرس المادةٌ (ا.مه. لؤي محمد علي اسماعيل)

Prepared By
Assist. Prof. Luay M. Ali

Types of stress

1- Compression stress
2- Ten sion stress
3- Bending stress
4- Shear stress

اجهاد الضغط

اجهاد السحب
اجهاد الاتحناء
الاجهاد القص

F \longmapsto Force
$\sigma=\frac{f}{a} \quad \longleftrightarrow \mathbf{N} /$ mm $^{2} \quad$ الوحاتون العام
$\sigma_{\mathbf{c}}=\frac{f c}{a} ; \quad \sigma_{\mathbf{t}}=\frac{f t}{\sigma} ; \quad \tau \mathbf{s}=\frac{f s}{a}$
$\sigma_{\mathbf{b}}=\frac{M b * y}{I}$;

Mb عزم الاتحناء N.mm
l عزم القصور الذاتي mm
y نصف قطر
*Subjected area to stress
A- For solid shaft

$$
\text { A= }=\frac{\pi}{4} d^{2} \quad \text { العمود الأول }
$$

B- For Hollow shaft

$$
A=\frac{\pi}{4}\left(d o^{2} _d i^{2}\right)
$$

Ex Find shear stress and tension stress for shaft (32mm) when shear force and tension force ($400 \mathrm{~N} ; 600 \mathrm{~N}$)?
$\tau_{\mathrm{s}}=\frac{F s}{A} \quad ; \quad \mathrm{A}=\frac{\pi}{4} \mathrm{~d}^{2} \quad ; \mathrm{A}=\frac{\pi}{4}(32)^{2}=772 \mathrm{~mm}^{2}$
$\tau \mathrm{s}=\frac{40 \mathrm{o}}{772}=0.05 \mathrm{~N} / \mathrm{mm}^{2}$

Ex Find Bending strees when shaft subjected to force the diam of shaft (31 mm) the length of shaft (82 mm) the pollar Moment $\left(120 \mathrm{~mm}^{4}\right.$)
$\square \mathbf{b}=\frac{M b * y}{I} \quad ; \quad \mathbf{M b}=\mathbf{F}^{*} \mathbf{L}$

$$
=200 * 82
$$

$$
\text { = } 16400 \mathrm{~N} . \mathrm{mm}
$$

$\sigma_{\mathbf{b}}=\frac{16400 * 18}{120}$
Ex For Hollow shaft the outer diam. and inner diam. (78 mm \& 58 mm) Find the shear stress and compression stress the shear force and comp force (800 N ; 600N).
$A=\frac{\pi}{4}\left(d o^{2} _d i^{2}\right) \quad ; \quad A=\frac{\pi}{4}\left(78^{2} _58^{2}\right)=427 \mathrm{~mm}^{2}$
$\tau \mathrm{s}=\frac{F s}{A s} \quad ; \tau \quad \mathrm{s}=\frac{800}{427}=1.8 \mathrm{~N} / \mathrm{mm}$
$\sigma_{\mathbf{c}}=\frac{F c}{A}=\frac{600}{427}=1.6 \mathrm{~N} / \mathrm{mm}$

Ex The ratio $\left.\frac{d i}{d o}=0.8\right)$ and the outer diam $(120 \mathrm{~mm})$ find the shear stress and tension stress when shear force ; and tension force (1600N ; 1200N)
$\frac{d i}{d o}=0.8$
di= do * $0.8=120 * 0.8$
$=96 \mathrm{~mm}$

$$
\begin{aligned}
A & =\frac{\pi}{4}\left({d o^{2}}^{2} \mathrm{di}^{2}\right) \\
& =\frac{\pi}{4}\left(120^{2} _96^{2}\right)=336 \mathrm{~mm}^{2}
\end{aligned}
$$

$\tau \mathrm{s}=\frac{F s}{A} \quad ; \quad \tau \mathrm{s}=\frac{1600}{336}=5.6 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{t}}=\frac{F t}{A}=\sigma_{\mathrm{t}}=\frac{120 \mathrm{o}}{336}=4.2 \mathrm{~N} / \mathrm{mm}^{2}$
قانون هوك Hock. Law
$\delta=\frac{F * L}{A * E}$
$\delta \Longrightarrow$ deflection in the length .
F \Longrightarrow Force ; $L \Longrightarrow$ Length ; $A \Longrightarrow$ area ;
E $\quad \Rightarrow$ Modulu young معامل يونك
Ex For pipe the outer and inear diam $(36-30 \mathrm{~mm})$ at length $(260 \mathrm{~mm})$ Find the reduction in the length if subjected to compression force (4300N) and Modulun younge ($\mathrm{E}=117$ * $1 \mathbf{1 0}^{\mathbf{3}}$ $\mathrm{N} / \mathrm{mm}^{2}$)
$A=\frac{\pi}{4}\left(d o^{2} _d^{2}\right) ; A=\frac{\pi}{4}\left(36^{2} _30^{2}\right)=311$
$\delta=\frac{F * L}{A * E}=\frac{4300 * 260}{311 * 117}=\mathbf{0 . 0 3 0 7} \mathrm{mm}$
-3-

The General Law Bettwen ($\mathbf{T} ; \tau ;{ }^{\theta}$)
القانون العام بين العزم والاجهاد القاص وزاوية الالتواء
$\frac{T}{J}=\bar{R}=\frac{G \theta}{L}$ وحدات
$\mathrm{T} \Longrightarrow$ Torque N.m; N.cm ; N.mm
$\mathrm{J} \Longrightarrow$ Pollar Moment

$$
\mathrm{m}^{4} ; \mathrm{cm}^{4} ; \mathrm{mm}^{4}
$$

$\theta \Longrightarrow$ angle torsion rad

Deg * $\frac{\pi}{180} \longmapsto$
(rad)
$\mathbf{G} \Longrightarrow$ Modlus of Rigidity $\quad \mathrm{N} / \mathrm{mm}^{2}$
$\tau \quad$ shear stress ; $\mathbf{L} \quad$ Length ; $\mathbf{R} \Longrightarrow$ radius of curvature

* Law of solid shaft قانون (العدود (لصلا
$J=\frac{\pi}{32} \mathbf{d}^{4} ; A=\frac{\pi}{4} \mathbf{d}^{2}$
*Law of Hollow shaft
$J=\frac{\pi}{32}\left(d o^{4}-d i^{4}\right) ; A=(\pi / 4)\left(d o^{2}-d i^{2}\right)$
*when shaft subjected Torque M عندما يتعرض العمود الى عزم التواء
$\mathrm{d}=1.72 \sqrt[3]{\frac{T}{\tau}} \quad \frac{T}{J}=\frac{\tau}{R}=\frac{G \theta}{L}$

For solid shaft
$\frac{\pi}{16} \mathbf{d}^{3}=\frac{T}{\pi}$
$\frac{T}{J}=\frac{\tau}{R} \quad \frac{T}{\frac{\pi}{32} d 4}=\frac{\frac{\tau}{d}}{2} \quad \frac{T}{\tau}=\frac{\pi}{32} \mathrm{~d}^{4} \times \frac{2}{d}$
$\mathbf{d}=1.72 \sqrt[3]{\frac{T}{\tau}}$
*For Hollow shaft
$\frac{T}{J}=\frac{\tau}{R}=\frac{G \theta}{L} \quad \frac{T}{J}=\frac{\tau}{R} \quad ; \quad \mathbf{J}=\frac{\pi}{32}\left(\mathbf{d o}^{4}-\mathrm{di}^{2}\right) \quad ; \quad \mathbf{R}=\frac{d o}{2}$
$\frac{T}{\frac{\pi}{32}(d o 4-d i 4)}=\frac{\frac{\tau}{d o}}{2}$
$\frac{T}{\tau}==\frac{\frac{\pi}{32} d o 4\left(1-\frac{d i 4}{d o 4}\right)}{\frac{d o}{2}}$
Let $\mathrm{K}=\frac{\pi}{32} \mathrm{~d}^{\mathrm{0}}\left(1-\mathrm{K}^{4}\right) * \frac{2}{d o}$

$$
\frac{T}{\tau}=\frac{\pi}{16} \mathrm{do}^{3}\left(1-\mathrm{K}^{4}\right)
$$

$$
\begin{aligned}
& \frac{\frac{T}{\tau}}{\frac{\pi}{16}(1-K)}=\frac{T}{\tau} * \frac{16}{\pi(1-K 4)} \\
& \mathrm{do}^{3}=\sqrt[3]{\frac{16}{\pi}} * \frac{T}{\tau\left(1-K^{4}\right)}=1.72 \sqrt[3]{\frac{T}{\tau\left(1-K^{4}\right)}}
\end{aligned}
$$

Ex For solid shaft $(150 \mathrm{~mm})$ diam is subjected to torque $\left(48+10^{6} \mathrm{~N} . \mathrm{mm}\right)$ Find Max shear stress and the torsion angle if Modulu Rigidity?
(34* $10^{3} \mathrm{~N} / \mathrm{mm}$) with length 600 mm
$\mathrm{J}=\frac{\pi}{32} \mathrm{~d}^{4}=\frac{\pi}{32}(150)^{4}=49.6 * 10^{6} \mathrm{~mm}^{2} ; \bar{J}=\frac{\tau}{12} ; \tau=\bar{J} * R$

$$
=\frac{48 * 106}{496 * 106} * \frac{150}{2}
$$

$\tau=7.25 \mathrm{~N} / \mathrm{mm}^{2}$
$\frac{T}{J}=\frac{G \theta}{L} \quad \theta=\frac{T}{J} * \frac{L}{G}=\frac{48 * 106}{49 * 106} * \frac{600}{34 * 103}$
-5-
Ex For pipe the outer and innear diam ($80 \mathrm{~mm} ; 64 \mathrm{~mm}$) is subjected to torque (42.8 * $10^{6} \mathrm{~N} . \mathrm{mm}$) Find shear stress and the length shaft if torsion angt (20°) and Modulu of Rigidity (28* 10^{3} N.mm)
$\mathrm{J}=\frac{\pi}{32}\left(\mathrm{do}^{4}-\mathrm{di}^{4}\right) ; \mathrm{J}=\frac{\pi}{32}\left(80^{4}-60^{4}\right)$
$\mathrm{J}=40.6$ * $10^{6} \mathrm{~mm}^{4}$
$\frac{T}{J}=\frac{\tau}{R} \quad ; \quad \tau=\frac{T}{J} * R$
$\tau=\frac{42.8 * 106}{40.6 * 106} *\left(\frac{80}{2}\right)=6.4 \mathrm{~N} / \mathrm{mm}^{2}$.
$\frac{T}{J}=\frac{G \theta}{L} ; \mathbf{L}=\quad=\frac{40.6}{42.8} * 28 * 10^{3} * 20 * \frac{\pi}{180}$

محاضرة الاسبوع الخامس والسـادس
Key الخابور
تعريف الخابور : وهي قطعة من الحديد المطروق تستذدم لربط قطعتين معاً بحي4ث يمنع أي حركة بينهما
أنواع الخوابير Types of Keys
1- الخوابير المماسية
2- الخوابير المدورة
3- الخوابير الغاطة وهذه على عدة أنواع :
الخابور المربع squer - Key
$\mathrm{b}=\frac{D}{4}=\mathrm{t}$

ب الخابور المستطيل Rectangular - Key

ج- خابور ذي الاقن
$\mathrm{B}=\frac{D}{4} ; \mathrm{T}=\frac{D}{6}$
$\mathrm{L}=1.57$ * D

-7-

Spline - shaft المحددات
$\mathrm{b}=\frac{D}{4}$
$D=1.25-d$

Length of Key

1- Rectangular Key المستطيل

$\mathrm{L}=\frac{\pi}{8} * \frac{D_{2}}{b}$
When $\mathrm{d}=20$
$\mathbf{b}=\frac{D}{4}=\frac{20}{4} 5$
$\mathrm{L}=\frac{\pi}{8} * \frac{D_{2}}{b}=\frac{\pi}{8} * \frac{400}{5}=31.4$
2- Squar Key
$\mathbf{L}=1.57 * D$
$D=10$
$\mathrm{L}=1.57 * 10=15.7$
عند تعرض العمود الى إجهاد سحق
$\mathrm{L}=\frac{\pi}{4} * \frac{D_{2}}{t} \quad \mathbf{d}=20 ; \quad \mathbf{t}=\frac{2}{3} * b$
$=\frac{2}{3} * 5=3.34$
$\mathrm{L}=\frac{\pi}{4} * \frac{202}{3.34}$
L = طول الخابور الرابع في حالة السحق

Ex Design Rectangular Key befor and after at diam (50 mm)Find all diamension?

$$
\begin{aligned}
\mathbf{b} & =\frac{D}{4}=\frac{50}{4}=12.5 \\
\mathbf{t} & =\frac{2}{3} b=\frac{2}{3} * 12.5=8.3 \\
\mathbf{L} & =\frac{\pi}{8} * \frac{D_{2}}{b} \\
& =\frac{\pi}{8} * \frac{502}{12.5}=78.5 \\
\mathbf{L} & =\frac{\pi}{4} * \frac{D_{2}}{t}=\frac{\pi}{4} * \frac{502}{8.3}
\end{aligned}
$$

/لثحام Welding

1- Lap. Welding Joint لحامتر/كبي
A- Single Lap welding. Joint

B- Double Lap welding. J

C- Paralled Lap. Welding. J

D- Double Lap. W. J

E- Cylider Lap.w.J

Bolt \& Nut البرغي والصامولـة
Law of Bolt and nut
$h=0.56 D$
$K=0.7 D$
$d o=d i+2 h$
$H=0.8 D$
$d i=d o-2 h$
$e=1.72 \mathrm{D}$
$S=1.5 \mathrm{D} ; \mathrm{b}=2 \mathrm{D}$
(جهاد سحب
Ft \quad قوة السحب
$=\frac{f t}{n\left(\frac{\pi}{4 d 2}\right)}$
$\tau s=\frac{f s}{n\left(\frac{\pi}{4 d 2}\right)}$

Ex For Bot find all diamension with tension stress and shear stress to the 6 Bolt if the diam of Bolt (18mm)at ft ; fs (400N; 600N)

$h=0.65 D$	$e=1.72 D$	$d o=d i+2 h$
$K=0.7 D$	$S=1.5 D$	$d i=d o-2 h$

$H=0.8 D \quad b=2 D$
محاضرة الاسبوع اللسابع والثامن
Rivet Joint
1- Lap. Riveted Joint
A- Single Lap. R. J

B- Double Lap. R. J

2- Butt Rivet Joint

A- Single Butt. Joint

B- Double Butt Joint

C- Multiple Rivet. J

D- Zig. Zag Butt R. J

Type of failure
فثل قصي
1- Shearing failure

2- Crushing failure

Law of Riveted stress

1- Shearing stress
$\tau=\frac{F s}{n\left(\frac{\pi}{4} d z\right)}$

$$
\begin{aligned}
& \tau=\text { اجهاد تماس } \\
& \text { Fs = قوة قص القطع المعرضة }
\end{aligned}
$$

2- Beanding stress اجهاد انحناء

$$
\begin{aligned}
& \sigma b=\text { اجهاد انحناء } ; \text { t = السمك } \\
& \text { Fb = قوة الانحناء ; d = قسط البرشام } \\
& \text { n = عدد القطع }
\end{aligned}
$$

3- Tension stress

$$
\begin{aligned}
& \text { قوة } \sigma t=\text { الثد والسحب } \\
& \text { P= الخطوة ; d= قسط البرشام }
\end{aligned}
$$

4- Efficieney of Rivet كفاءة البرشام
$\delta=\frac{f s ; F b ; F t \text { اققل قيمة }}{f} \times 100 \%$

$$
\begin{aligned}
& \mathbf{f}= \\
& \delta=\frac{f s ; F b * F t \text { اقل } \quad \frac{\text { قيمة }}{\sigma t * p * t} \times 100 \%}{}
\end{aligned}
$$

Ex Single lap joint rivet the thickness(1.5cm); the diam of rivet (20 mm). Find the efficiency of Rivet when pitch (6 cm)
${ }_{2} ; \sigma b=1600 \frac{\mathrm{~N}}{\mathrm{~cm}^{2}} ; \quad \sigma t=\frac{1200 \mathrm{~N}}{c \square{ }_{2}}$
$\tau=\frac{F s}{n\left(\frac{\pi}{4} d 2\right)} \quad ; \quad \mathbf{F s}=\mathbf{N}^{* \pi / 4 * \mathbf{d}^{2} * \tau}$

Fs $=900 * \rho * \frac{\pi}{4}\left(\frac{20}{10}\right) 2=2827 N$
$\mathrm{Fb}=4800 \mathrm{~N}$
$\mathbf{F t}=(\mathbf{p}-\mathbf{d}) * t * h * \sigma t \quad=(6-2) * 1.5 * 1 * 1200=7200 \mathrm{~N}$
$\delta=\frac{F s ; F b ; F t}{\sigma t * p * t} * 100 \%=\frac{2827}{1200 * 6 * 1.5} * 100 \%$
Ex Find the efficiency of Rivet at thickness(t=8mm); $\quad=\frac{30 \mathrm{~N}}{m \square{ }^{2}}$ the width 70 mm diam of
Rivet (18mm) at Joint three picea; $\sigma b=50 \mathrm{~N} / \mathrm{mm}^{2}$; $\sigma t=60$
$\tau s=F s I\left(n(\pi / 4 d 2) \quad ; \quad\right.$ Fs= $\mathbf{d}^{2} * n$
Fs $=30^{*} \frac{\pi}{4} * 18^{2 *} 3=22892 \mathrm{~N}$
$\mathbf{F b}=\sigma b *(t * d) n$
$=50 *(8 * 18) * 3=720 \mathrm{oN}$
$\mathbf{F t}=\sigma t *(p-d) * n * t$
$60 *(70-18) * 3 * 8=2160 \mathrm{oN}$
$\delta=\frac{F_{s} ; F b ; f t \text { اقل قيمة }}{\sigma t * p * t} * 100 \%$
$=\frac{7200}{60 * 70 * 8} * 100 \%=21 \%$

Spring

Spring are used at
1- Appling force or Controling and brake and clutch
2- Reducing the effect of shocks
3- Storing energy
4- Measuring force
Type of Spring
1- Helical spring نابض حلزوني
a- Compression helical spring
b- Tension helical spring
2- Leaf spring نابض ورقي
3- Torsional spring نابض التواء
Free Length of spring
Lf = Ls + $\delta+\mathbf{L s} \quad$ (n+d) \quad الطول المضغوط
E = (n-1) 0-1 الاستطالة

دليل النابض Spring index(C
$\mathrm{C}=\frac{d m}{d} ; \mathrm{dm}=$ متوسط القطر $\mathrm{d}=$ قتابض
$d m=d i+d ; d m=d o-d$
$\mathrm{d}=\frac{d o-d i}{2}$
*Stiffness spring معدل متانة النابض
Ks $=\frac{F}{\delta} \quad \mathrm{~F}=$ force $; \quad \delta=\begin{aligned} & \text { الاستطالة }\end{aligned}$
*Pitch(p)
$\mathbf{P}=\frac{L f}{(n-1)}$
*Shesr stress of spring
$\tau=\frac{8 * f * d m}{\pi d 3} * K$

$$
\mathrm{K}=\frac{4 c-1}{4 C-4}+\frac{0.615}{C}
$$

*Deflection of spring
$\delta=\frac{8 * n * F * d m 3}{G * d 4}$; G = معامل الصلادة N/mm²

Ex : Helical spring the mean diam (25 mm) and wire diam $(3 \mathrm{~mm})$ if the shear st (44* 10^{6} $\mathrm{N} / \mathrm{mm}^{2}$) and deflection(25 mm)\& $\mathrm{G}=86.2^{*} 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$

Find: 1- max loading force
$\mathbf{C}=\frac{d m}{d}=\frac{25}{3}=8.3 \mathrm{~mm}$
$K=\frac{4 c-1}{4 c-4}+\frac{0.615}{c}$
$=\frac{8.3 * 4-4}{4 * 8.3-1}+\frac{0.615}{8.3}=1.17$
$\tau=\frac{8 * F * d m * K}{\pi d 3}$
$\mathbf{F}=\frac{\pi d 3 * \tau}{8 * d m * K}=\frac{\pi 33 * 44 * 106}{8 * 25 * 1.17}=\mathbf{2 4 0 N}$
$\delta=\frac{8 * n * d m 3 * F}{G * d 4}$
$\mathbf{n}=\frac{\delta * G * d \mathbf{4}}{8 * d m 3 * F}=\frac{25 * 86.2 * 104 * 34}{8 * 253 * 246}$

$$
n=10
$$

$\mathbf{p}=\frac{L f}{(n-1)}=\frac{(n+d)+\delta+(n-1) * 0.1}{(n-1)}=\frac{10 * 3+25(10-1) * 0.1}{(10-1)} \quad \mathbf{P}=\mathbf{2 . 5 m m}$
Ex: helical spring the diam of wire (6 mm) the main diam97.5mm); shear st. ${ }^{\sigma}=350 * 10^{3}$
$\mathrm{N} / \mathrm{mm}^{2}$; $\mathrm{G}=840 \mathrm{~N} / \mathrm{mm}^{2}$; No of coil(30turn)
Find: 1- loading force 2-deflection 3- Free length

4- Solid length \&E

$\mathbf{C}=\frac{D m}{d}=\frac{7.5 * 10}{6}=12.5$
$\mathrm{K}=\frac{4 c-4}{4 C+4}+\frac{0.615}{c}=\frac{4 * 12.5-4}{4 * 12.5-1}+\frac{0.615}{17.5}=2.17$
$\tau=\frac{8 * F * D m * K}{\pi d 3}$
$\mathbf{3 5 0}=\frac{8 * F * 75 * 2.17}{\pi(63)}$
$\therefore \mathrm{F}=198 \mathrm{~N}$
2- $\delta=\frac{8 * n * F * d m 3}{G * d 4}=\frac{8 * 30 * 198 *(75) 3}{840 * 64}=0.303$
$\mathbf{L f}=(\mathbf{n} \mathbf{d} \mathbf{)}+\delta+E$
$=(30+6)+0.303+(n-1) * 0.1)=41$
3- $L s=\left(n^{*} d\right)=\left(30^{*} 6\right)=180 \mathrm{~mm}$
$E=(n-1) * 0.1$
$=(30-1)^{*} 0.1=2.9 \mathrm{~mm}$
Ex: Helical spring diam of wire(6 mm)and outer diam (75 mm); $950 \mathrm{~N} / \mathrm{mm}^{2}$ shear stress. (350) Find
1- Loading force
2- deflection per no of

3- stiffness of spring

Dm $=$ do $-d=75-6=69 \mathrm{~mm}$
$\mathbf{C}=\frac{d m}{d}=\frac{69}{6}=11.5$
$\mathrm{K}=\frac{\mathbf{4} c-1}{4 C-4}+\frac{0.615}{c}=\frac{4+11.5-1}{4+11.5-4}+\frac{0.615}{11.5}=1.12$
$\tau=\frac{8 * f * d m * K}{\pi d \mathbf{3}} ; \quad \mathbf{F}=\frac{\tau+\pi d \mathbf{3}}{8 * d m * k} \quad \mathbf{F}=\frac{350 * \pi *(63)}{8 * 69 * 1.1}=\mathbf{2 8 9 N}$
$\tau=\frac{8 * n * d m 3 * F}{G * d 4}=\frac{8 * 693 * 289}{950 * 64}=\frac{\delta}{h}$
$\frac{\delta}{n}=9.2 * 10^{-3} \mathrm{~mm}$
$\mathrm{K} \mathbf{s}=\frac{F}{\delta}=\frac{289}{9.2 * 10-3}$

Ex: For Helical spring the ratio between innear out diam(0.6); the shear stress($640 \mathrm{~N} / \mathrm{mm}^{2}$) and $360 \mathrm{~N} / \mathrm{mm}^{2}$ at outer diam (120 mm) Find; No of Cool24

1- Stiffness of spring 2-Pitch
$\frac{d i}{d e}=0.6 ; d i=120 * 0.6=72$
$\mathbf{d}=\frac{d o-d i}{2}=\frac{120-72}{2}=24 \mathrm{~mm}$
$\mathrm{dm}=\mathrm{do}-\mathrm{d}=\mathbf{1 2 0} \mathbf{- 2 4}=\mathbf{9 6 m m}$
$\tau=\frac{8 * F * d m * k}{\pi d 3} ; \quad \mathbf{C}=\frac{d m}{d}=\frac{96}{24}=4$
$K=\frac{4 c-1}{4 c-4}+\frac{0615}{c} ; K=\frac{4 * 4-1}{4 * 4-4}+\frac{0.615}{4}=0.8$
$\mathbf{F}=\frac{\tau * \pi * d \mathbf{3}}{8 * d m * K}=\frac{640 * \pi *(211) 3}{8 * 96 * 4}=105 \mathrm{~N}$
$\delta=\frac{8 * n * d m 3 * F}{G * d 4}=\frac{8 * 24 * 963 * 105}{360 * 244}$
$\mathrm{Ks}=\frac{f}{\bar{\delta}}=\frac{105}{0.02}=\mathbf{0 . 0 2}$
$\mathbf{P}=\frac{L f}{n-1}$
الاسبوع الحادي عشل والثاني عشر
Belts and Pulleys
*Types of belts
1- Flal belt
2-Vee-belt
3-Circular belt
نسبة اللرع Speed Condition
A- Single Condition
B- Compound condition
$\frac{N_{2}}{N_{1}}=\frac{d 1}{d 2}$

$$
\frac{N_{4}}{N_{1}}=\frac{d 1 * d 3}{d 2 * d_{4}}
$$

Ex : It is the drive shaft at ($\mathrm{N} 1=620 \mathrm{r} . \mathrm{p} . \mathrm{m}$) by means belt from parallel shaft having apuling(d1=30cm)\& running at(240 r. p. m)

N1 =620; d1= 30; N2= 240
N1 d1 =N2 d2
620 * $30=240 * d 2$
$\mathbf{d} 2=\frac{620 * 30}{240}=77 \mathrm{~cm}$

Ex: For compound Coneltion the diam(d1=50cm; d2=25cm ; d3=70; d4=28) and rotation speed at driver shaft($\mathrm{N} 1=180 \mathrm{r} . \mathrm{p} . \mathrm{m}$) find the rotation speed in driven shaft ?
$\frac{N_{4}}{N_{1}}=\frac{d 1 * d \mathbf{3}}{d 2 * d 4} \quad ; \quad \mathbf{N} 4=\mathbf{N} 1 * \frac{d 1 * d 3}{d 2 * d 4}$
$\mathbf{N 4}=180^{*} \frac{50 * 7 \mathrm{o}}{25 * 28}=90$ or. p.m
Power transmitted by belt
$\mathrm{P}=(\mathrm{T} 1-\mathrm{T} 2) * \mathrm{~V} \quad ; \mathbf{P}=$ power $\quad ;$ watt $=\frac{\mathrm{N} . m}{\mathrm{~S}}$
T1 = Max tension Force

T2 = Min tension force
$\mathrm{V}=$ velocity
$P A=(T 1-T 2) V A$
$P B=(T 1-T 2) V B$
ملاحظ: إذا أعطيت قيمة T بالكيلو غرام يضرب بقيمة التعجل الأرضي(9.81)
Ex: The tension in two side(100Kgf; 80Kgf)and the velocity $\mathbf{7 5 m} / \mathrm{s}$ Find the power in hours power
$\mathbf{P}=\frac{T 1-T 2}{750} * V ; \mathbf{P}=\frac{100-80}{750} * 75=\mathbf{2 H} . \mathbf{p}$
Slip of belt الانزلاق في اللبيور
A- For single conclition
$\frac{N_{2}}{N_{1}}=\frac{d 1}{d 2}\left(1-\frac{s t}{10 V}\right) \quad$ st $=(s 1+s 2)$

B- For compound coneltion

$$
\frac{N_{4}}{N_{1}}=\frac{d 1 * d 3}{d 2 * d 4}\left(1-\frac{s t}{100}\right)
$$

-22-
Ex: An engine running(150r. p. m) for driver shaft the diam of pulley (d1=750; d2=450; $d 3=900$) Find the final rotation speed if the silp in two side $\mathbf{2 L}$

S1 =0.02; S2 =0.02; St=0.04
$\frac{N 4}{N 1}=\left(\frac{d 1 * d 3}{d 2 * d 4}\right)\left(1-\frac{s t}{100}\right)$
$\mathbf{N} 4=\mathbf{N} 1((d 1 * d 3) /(d 2 * d 4))(1-0.04)=150\left(\frac{750 * 90 \mathrm{o}}{450 * 150}\right)(0.96)=1440$
Ratio of tension in belt
T1
$\overline{T 2}=\mathbf{m}^{\theta} ; \quad \mathbf{T} \mathbf{1}=\mathbf{m a x}$ tension force; $\mathbf{T 2}=\mathbf{m a x}$

$$
\mathbf{M} \text { or } \mu=\text { Cofficient of friction ; } \theta=\text { Angle of contact }
$$

Or $2.3 \log \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}=\mathrm{e}^{\mu \boldsymbol{\theta}}$
v= $\frac{\pi D N}{60} \quad$ تحويل السرعة اللور/نية الى خطبة
*length of belt
A-open sys
$\mathbf{L}=\left[\pi(r 1+r 2)+\left(r 1-r_{2}\right) 2 / X+2 X\right]$

Ex: Find the force power in A\&B transmitted by belt running over pulley $(60 \mathrm{~cm} ; 40 \mathrm{~cm})$ at rotation speed(200r. p. m; 120r. p. m)with coffieient of fricition(0.25) and angle (160°) and max tension force(250N)?
$\mathrm{VA}=\frac{\pi D N}{60}=\frac{\pi\left(\frac{60}{100}\right)=200}{60}=6.28 \mathrm{~m} / \mathrm{s}$
VB $=\frac{\pi\left(\frac{40}{100}\right) * 120}{60}=2.5 \mathrm{~m} / \mathrm{s}$

$$
\mathrm{T} 2=124 \mathrm{~N}
$$

$\mathrm{PA}=\frac{T 1-T_{2}}{750} * \mathrm{VA}=\frac{250-124}{750} * 6.28=1.05$ H.P
$\mathrm{PB}=\frac{1-T 2}{750} * V B=\frac{\square}{2.5}=0.42 \mathrm{H} . \mathrm{P}$
Ex: Find the length of belt in open and Cross sys the diam in drive and driven (480 cm ; $80 \mathrm{~cm})$ the distance between the center of pulley $(1200 \mathrm{~cm})$
$r 1=\frac{d 1}{2}=\frac{480}{2}=240 ; \quad r 2=\frac{80}{2}=40$
L open $=[\pi(r 1+r 2)+(r 1-r 2) 2 f x+2 x]$

$$
=[\pi(240+40)+(240-40) 2 / 1200+2 * 1200]=3313 \mathrm{~cm}
$$

L cross $=\left[\pi\left(r 1+r_{2}\right)+\frac{(r 1+r 2) 2}{x}+2 x\right.$

$$
=\left[\pi(240+40)+\frac{(240+40) 2}{1200}+2 \times 1200=3344.5 \mathrm{~cm}\right.
$$

Ex: Find the force power transmitted by Belt running over pulley $(60 \mathrm{~cm})$ diam. At rotation speed(200r. p. m); 0.25; angle(160 ${ }^{\circ}$) and max tension force(250N)?
$\mathbf{V}=\frac{\pi d N}{60}=\frac{\pi\left(\frac{60}{100}\right)}{60} * 200=\frac{6.28 m}{\square}$
$\mathbf{T} 2=\frac{250}{\frac{0.25 * 160 * \frac{\pi}{80}}{}}=\mathbf{1 2 4 N}$
$\mathbf{P}=\frac{T 1-T 2}{750} * \mathbf{v}=\frac{750-124}{750} *$
$6.28=10.5 \mathrm{H} . \mathrm{P}$
Ex: Compute the power for pulleys(A \& B) the diam the driven and driving(140mm;
80 mm) with rotation speed $91200 ; 800 \mathrm{r} . \mathrm{p} . \mathrm{m}$); $\mathrm{M}=0.25$ and max tension force(650 N) and Angle(110 ${ }^{\circ}$)?
$\mathrm{VA}=\frac{\pi D N}{60}=\frac{\pi\left(\frac{140}{1000}\right) * 1200}{60}=(2.5 \mathrm{~m} / \mathrm{s})$
$V B=\frac{\frac{80}{1000} * 800}{60}=10.5 \mathrm{~m} / \mathrm{s}$
310N $\quad \mathrm{PA}=$
$\mathrm{PB}=\frac{T 1-T_{2}}{750} * V B=\frac{640-310}{750} * 10.5=5.6 \mathrm{H} . \mathrm{P}$
EX: Deter mine the efficiency of rivet with thickness(6 mm); shear stress($150 \mathrm{~N} / \mathrm{mm}^{2}$) when tension and Bending stress9180; 240N/mm ${ }^{2}$)?
$\tau s=\frac{f s}{n(\pi / 4 d 2)} ; \tau s * n * \frac{\pi}{4} \mathbf{d}^{2}$
$\mathrm{fs}=150^{* 2 * \frac{\pi}{4} *}\left(12^{2}\right)=$
$\mathbf{f b}=\sigma b * \frac{\pi}{4} * n(t * d)=240 * \frac{\pi}{4} * 2(6 * 12)$
$\mathbf{f t}=\sigma t *(p-d) * t * n=180 *(36-12) * 6 * 2$

$$
\delta=\frac{f t_{;} f b ; f s}{\sigma t} * 100 \%
$$

EX: For helical spring the ratio($d i / d o=0.8)$ with outer diam $(84 \mathrm{~mm})$; No of coil(18turn)
$\tau=6880 \mathrm{n} / \mathrm{mm}^{2} \quad ; \quad \mathbf{G}=8700 \mathrm{~N} / \mathrm{mm}^{2}$
Find : 1- loading force 2-deflection 3-pitch
$\frac{d i}{d o}=0.8 \quad ;$ di=do* $0.8=84 * 0.8=67.2$
$\tau=\frac{8 * f * d m * K}{\pi d \mathbf{3}} ; \quad \mathbf{f}=\frac{\pi d 3 * \tau}{8 * d m * K}=\frac{\pi * 8.53 * 688 \mathbf{0}}{8 * 75.5 * 9.5} \quad \mathbf{f}=\mathbf{2 5 N}$
$\mathbf{d}=\frac{d o-d i}{2}=\frac{84-67.2}{2}=8.5$
$d m=d i+d=67.2+8.5=75.5$
$\mathbf{C}=\frac{d m}{d}=\frac{75.5}{8.5}=9.5$
$\mathrm{K}=\frac{4 c-1}{4 c-4}+\frac{0.615}{c}=\frac{4 * 9.5-1}{4 * 9.5-4}+\frac{0.615}{9.5}=3.2$
$\delta=\frac{8 * f * d m 3 * n}{G * d 4}=\frac{8 * 25 * 75.73 * 18}{8700 *(8.5)_{4}}$
$\mathbf{P}=\frac{L f}{(n-1)}$
-26-
EX: Find shear stress and diam after stress with outer diam and innear diam(46mm: 32 mm)at power(48H.p) and rotation speed(840r. p. h) the Contant $\mathrm{K}=0.2$ when pipe subjected to tosio stress?
$P=$
$\mathbf{T}=\frac{p * 3600}{2 \pi N}=\frac{48 * 750 * 3600}{2 \pi * 840}=24567 N$
$J=\frac{\pi}{32}\left(\mathrm{do}^{4}-\mathrm{di}^{4}\right)=\frac{\pi}{32}\left(46^{4}-32^{4}\right)$
$\frac{T}{J}=\frac{T}{R} \quad ; \quad \tau=\frac{T}{J} * R=\frac{24567}{J} *(46 / 2)$
$\mathbf{d}=1072^{\frac{T}{\tau(1-k 4)}}$
الاسبوع الخامس عثر و السادس عشر
Clutch (النـابض(الفاصل)
Define: It is adevic mechanical between the engine and gear. Box to transmitte the power and treatment the vibration the shaft and another

أنواع القو/بض Type of clutch
1- Friction clutch
قابض /حتكاكي
2- Direct clutch قابض مباشٌ
3- Fluid clutch قابض هيروليكي
4- Cone clutch قابض مخروطي
5- Cenlerfugal clutch قابض مركزي
*System of disc clutch
A - uniform pressure
$\left.\mathbf{T}=\mathbf{n}^{* m * m * \frac{2}{3} *\left(\frac{r 13-r 13}{r 1} 2-r 22\right.}\right)$
$\mathrm{n}=($ (No of driving+ No. Of disc(for drive) -1 \quad N.m ; N. cm ; N. mm
= torque ; n= No of disc friction عدلد الأوجه المحتكة
m= coefficient of Friction ; w= weight
r1, r2= Radii of friction disc
D. uniform wear التآكل المنتظم
$T=n$
EX: A single plate friction clutch For uniform wear the power (30 H.P) at rotation speed 2100r. p. m and axial load $(145 \mathrm{~N})$ the external diam $(250 \mathrm{~cm})$ Find the internal diam with $\mathrm{m}=$ 0.35 ?
$\mathrm{P}=$
$\mathbf{T}=\frac{30 * 750 * 60}{2 \pi * 2100}=102.3 \mathrm{~N} . \mathrm{m}$
$\mathbf{T}=\mathbf{n}^{* m * w * \frac{r 1+r 2}{2}}$
R1 $=\frac{25 / 2}{100}=0.125 \mathrm{~m}$
$102.3=\mathbf{2}^{* 0.35 * 145 * \frac{0.125+r 2}{2}}$
$\mathrm{R} 2=1.89 \mathrm{~m}$; $\mathrm{D} 2=3.78$
EX: single plate driction clutch mean Radiun $(7.5 \mathrm{~cm})$ the loading force $(\mathbf{2 . 5 K} \mathrm{N}) ; \mathrm{m}=0.3$ and $\mathrm{N}=3000$ r. p. m Find the Torque and power at uniform wear
$\mathrm{P}=$
$2 \pi N T$
$\mathbf{P}=\frac{2 \pi * 3000 * 112.5}{60}$
$=\frac{6.28 * 3000 * 112.5}{60}=35325 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~s}}=47.1 \mathrm{H.P}$
29-
Ex: For uniform pressure; No of disc in driving and driver(3; 2) external and internal diam ($240 \mathrm{~mm} ; 120 \mathrm{~mm}$) and power(25KW)
$\mathrm{N}=1575 \mathrm{r} . \mathrm{p} . \mathrm{m} ; \mathrm{m}=0.25$ Find the total Load?
$\mathrm{N}=$ (No of dis in driving+ No of disk in driven $)-1$

$$
=(3+2)-1=5-1=4
$$

$\mathbf{P}=2 \pi N T$
$25 * 1000 * 60$
$\mathrm{T}=2 \pi * 1575=151.9$
$\mathbf{T}=\mathbf{n}^{* m * W * \frac{2}{3}}\left(\frac{r 13-r 2 \mathbf{3}}{r 12-r 22}\right)$
151.6= 4

$$
4 * 0.25 * W * \frac{2}{3}\left(\frac{(0.12) 3-(0.06) 3}{(0.12) 2-(0.06) 2}\right)
$$

151.6
$* 3 / 2=w((0.001728-0.000216) /(0.0144-0.0036)=w(0.001512 / 0.01081) \quad w=1625 N$
قابض مخروطي Core clutch
1- Uniform pressure
$\mathrm{T}=\mathrm{n}$
$\operatorname{Cosec} \theta=\frac{1}{\sin \theta}$
2- Uniform wear
$\mathbf{T}=\mathbf{n}$

EX: For uniform wear at cone clutch the angle (30°) the external and internal(250 mm ; 150 mm) the friction disc in driving and drive (3; 2)the axial force ($10 \mathrm{~K} \mathrm{n)} \mathrm{m=0.25} \mathrm{and}$ angule speed= 100 rad/ s
$N=(3+2)-1=4 \quad T=n$

$$
=4 * 0.25 *(10 * 103) * \frac{0.25+0.15}{2} * \frac{1}{\sin 30}=2750 \text { N.m }
$$

$\mathrm{P}=$
$\mathbf{w}=\frac{2 \pi N}{60}$

EX: Find No of friction dis wear the diam for driving and driven(180mm. 160mm) at power(8 H.P) at rotation speed(1400r. p. h) with $m=0.3$?

A- Uniform pressure
B- Uniform wear
C- Loading force 1200 N

$$
\mathrm{T}=\frac{8 * 750 * 360 \mathrm{o}}{2 \pi * 140 \mathrm{o}}=\frac{2160 \mathrm{o}}{87.9}=2454.5 \mathrm{~N}
$$

$\mathbf{T}=\mathbf{n} * m^{* W} * \frac{r 12-r 23}{r 12-r 22}$
2454 $=\mathbf{n} * 0.3 * 200 *((0.18) 3-(0.16) 3) /(0.18) 2-(0.16) 2)$
$\mathrm{n}=\frac{2454}{0.3 * 200} * \frac{0.182-0.162}{0.183-0.163}=\frac{0.0324-0.0256}{0.005832-0.004096}=\frac{2454}{0.3 * 1200} * \frac{0.0068}{0.00173}=2.6 \approx \mathbf{3}$
$\mathrm{T}=\mathrm{n} * m * W * \frac{r 1+r 2}{2}$
2454 $=\mathrm{n}^{*} 0.3 * 1200 * \frac{\frac{90}{100_{0}} * \frac{80}{1000}}{2}$

$$
n=\frac{2454}{0.3 * 1200} * \frac{2}{0.17}=80
$$

-31-
EX: For uniform wear at cone clutch the external and internal diam ($120 \mathrm{~mm} ; 80 \mathrm{~mm}$) the friction disc in driving and driven (4; 2) the axial(2500N) at coefficient of friction (0.25)with power(40 H.P) and angular speed (100) radls? Find the angle?
$\mathrm{P}=$
$40 * 750=100 * T$
$\mathbf{T}=\mathbf{4} * 75=20 \mathrm{oN} \cdot \mathrm{m}$
cosec $=\frac{300}{125}$

$$
\text { Cosec }=2.4
$$

$$
\frac{1}{\operatorname{sine}}=2.4
$$

$\mathrm{T}=\mathrm{n}=0.416$

Ex: A spur gear of Module(4) and No of teeth(32). Determine all diamension?
DP $=\mathbf{M}$ * $\mathbf{T}=\mathbf{4 *} 32=12 \mathrm{smm}$
DO $=\mathbf{D P}+\mathbf{2 M}=\mathbf{1 2 8 + 2 *} 4=136 \mathrm{~mm}$

$$
B=1.2 \mathrm{H}
$$

$$
=1.2 * 4=4.8
$$

DR=DP _ 2.4M =128-2.4* $4=118.4 \mathrm{~mm}$
$\mathbf{H}=\mathbf{2 . 2 M}=\mathbf{2 . 4 * 4}=8 . \mathrm{smm} \quad \mathrm{Pe}=$
$\pi D P$

$$
\mathbf{R}=\frac{1}{8} * d p=\frac{1}{8} * 128=16 \mathrm{~mm}
$$

$\mathrm{H}=0.065 \mathrm{P}$

$$
\mathbf{P}=\frac{H}{0.65}=\frac{8.8}{0.65}=13.5
$$

EX: Bevel gear the ratio between root diam and out diam(0.8) with the outer diam(140) Find all diamension?
$\frac{d i}{d o}=0.8 ; d i=d o * 0.8 ; d i=140 * 0.8=112 \mathrm{~mm}$
$d o=d p+2 M$ \qquad
$\mathrm{di}=\mathrm{dp}-2.4 \mathrm{M}$........ 2
$d p=d p-2 M3 \quad d i=d o-2 M-2.4 M$
$4.4 \mathrm{M}=\mathrm{do}-\mathrm{di}=140-112 \quad \mathrm{M}=\frac{18}{4.4}=4 \quad \mathrm{dp}=140-2 * 4=132$
$\mathbf{T}=\frac{d p}{M}=\frac{132}{4}=33$ $R=$
$\mathbf{R}=\frac{1}{8} d p=\frac{1}{8} * 132=16.5$
*ration of speed in gears نسبة (السرع بالتروس
$\mathrm{C}=\mathrm{r} 1+\mathrm{r} 2$
N1 * d1= N2 d2
$\frac{N_{1}}{N_{2}}=\frac{d 2}{d 1} \quad ; \quad \frac{N_{1}}{N_{2}}=\frac{T_{2}}{T_{1}}$

C =distance between gears
r1, r2= raolun of gears
N1, N2 rotation speed
A- Advantage of gear
1- Transmitted exact velocity ratio
2- High efficiency
3- Tranmitted a large power
B- Dis advantage of gear
1- The manufaction of gear required aspical toof
2- Any error in tooth caven vibration and noise
3- Any effect in gear is demage in teeth
Lewise equation معادلة لويس
$\mathbf{W} \mathbf{t}=\sigma b * b * \pi * m * y$

Wt = tangential load حمل مماسي
$\sigma b=$ Bending stress جهاد انـناء
b= teath width عرض السن
$\mathrm{M}=$ modul
عامل لويس
$\mathbf{T}=\mathbf{W} \mathbf{t} \boldsymbol{*} \cdot \operatorname{s} * r s$
عزم Cs= عامل الحزم

Wt= حمل مماسـي rs= أصغر نصف قطر

Power $=\mathbf{T}^{*} \mathbf{W}$
T = عزم ; W= سرعة زاوية ; Angular velocity rad/s

EX: By using Lewise equation Find the No. of teeth at gear connected with diam(0.6m) when 1- Lewise factor(0.1) 2-width teeth 10 M

3- Torque $\mathbf{3} \mathrm{Kn} . \mathrm{M}$; c= $\mathbf{4 5 \mathrm { cm } ; ~ c s = 1 . 3}$
$\sigma b=2500 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}{ }^{2}$
$r 2=\frac{d 2}{2}=\frac{0.6 * 100}{2}=30 \mathrm{~cm}$
$r 1+r 2=C \quad=45-30=r 1 \quad \therefore r 1=15 \mathrm{~cm}$
$\mathbf{T}=\mathbf{W t} * R 2 * C s$
$\mathbf{W} \mathbf{t}=\frac{T}{r S * C s}=\frac{3 * 1000}{\frac{15}{100} * 1.3}=15384.6 \mathrm{~N}$
$W \mathrm{t}=\sigma b * b * m * \pi * y$
$15384.6=2500 * 10 M * M * \pi * 0.1$
$\mathbf{M}^{2}=\frac{15384.6}{2000 * \pi * 0.1}=\frac{15384.6}{2500}=1.9$
$\mathrm{M}=1.39=1.5$
$\mathrm{D} 1=\mathrm{Dp} 1=\mathrm{M} * T_{1}$
$30=1.5^{*} T_{1}=\mathrm{T} 1=20$
$\mathrm{D} 2=\mathrm{Dp} 2=\mathrm{M} * T_{2}$
$\frac{15}{1.5}=T 2=10$

التروس Gearing

أنواع التروس Type of gearing
1- External gearing
2- Internal gearing
3- Rack and pinion
أنواع (لمسننات Types of gear
1- Spur gear ترس عدل

2- Bevel gear ترس مخروطي
3- Rack and pinian جريدة
4- Worm gear ترس دولة
5- Helical gear ترس طلزونـي
*Diagran of gear
Law of gear
1- $\mathrm{DP}=\mathrm{M} * T$
قطر /لخطوة DP= pitch diam

$$
\mathrm{M}=\text { Modul }
$$

T= No of teeth
Do=Dp+2A
2- $\mathrm{Do}=\mathrm{Dp}+2 \mathrm{M}$
Do= out diam
3- $\operatorname{Dr}=\mathrm{Dp}-2.4 \mathrm{M}$
$A=M \quad ; \quad B=1.2 A$
4- H= 2.2*M ارتفاع السن
5- Circular pitch (Pt)
$\mathrm{Pc}=\pi D p$
Arc of teeth : $\mathbf{R}=\frac{1}{8} D P$
EX: By lewise equation compute the M of teeth if shall diam(80 cm) $\mathrm{y}=0.3 .2 ; \mathrm{Cs}=1.8$; $\mathrm{T}=$ 1120 N.m ;
$\sigma b=\frac{360 N}{c \square^{2}} ; \quad \mathbf{b}=\mathbf{8} \mathbf{M}$
$\mathrm{R} 1=\frac{d_{1}}{2}=\frac{80}{2}=40 \mathrm{~cm}$
$r 1+r 2=140$
$r 2=140-40=100 \mathrm{~cm}$
$\mathbf{T}=\mathbf{W} \mathbf{t}{ }^{*} C s * r s$
$1120=\mathrm{Wt}^{* 18 * \frac{40}{100}}$
Wt= 1555.5 N
$\mathbf{W} \mathbf{t}=\sigma b * b * M * y * \pi$
$1555=360 * 5 * 8 \mathrm{M}^{2} * 0.32 * 3.14$
$\mathbf{M}^{2}=\frac{1555}{9034} ; \quad M=0.5$
$\mathrm{Dp}=2 \mathrm{r} 1=\mathrm{M}$ T1
$T 1=\frac{2 * 40}{0.5}=160$
$\mathbf{T 2}=\frac{2 * 100}{0.5}=400$
معادلة لويس Lewise equation
$\mathbf{W} \mathbf{t}=\sigma b * b * m * y * \pi$
Wt= الحمل المحوري ; b= ;y
$\sigma b=$ جهاد الانحناء ; M=
T=Wt*CS*rs ; T= عزم ; C1= عامل الخدمة
Power=
$\mathbf{W t}=$ power $=\mathbf{W t}$
EX: By lewise equation compute the No. of teeth if rotation speed for driven and driving(260, 90 r. p. m) when Torqu 210V N. m ; $\mathrm{X}=44 \mathrm{~cm} ; \mathrm{y}=0.1$; $\mathrm{Cs}=2.4$;
$\sigma b=\frac{1500 n}{m \square}{ }^{2} ; \mathbf{b}=\mathbf{8 M}$?
$\frac{N_{1}}{N_{2}}=\frac{d 2}{d 1} ; \frac{90}{26}=\frac{d 2}{d 1} ; \quad \frac{r 2}{r_{1}}=0.34$
$\mathrm{r} 2=\mathrm{r} 1 * 0.34$
$r 1+12=44$
$r 1+r 1 * 0.34=44$
$\mathrm{r} 1=\frac{44}{1.34}=32.8 \mathrm{~cm}$
r2 $=\mathbf{0 . 3 4} * 32.8=11.16 \mathrm{~cm}$
$\mathbf{T}=\mathbf{w t} \mathbf{t}^{*} \operatorname{si} * s$
$\mathbf{W t}=\frac{210 \mathrm{o}}{2.4 * \frac{11.2}{100}}=7812.5 n$
$\mathbf{W} \mathbf{t}=\sigma b * b * m * y * \pi$
7812.5 $\mathbf{1 5 0 0 * 8} M * m * 0.1 * 3.14=3768 \mathbf{M}^{2}$
$\mathrm{M}^{2}=\frac{7812.5}{3768}$
$\mathbf{M}=1.439 \approx 1.5$
$\mathrm{Dp}=\mathrm{MT}$
Dp1= 2 r1 = MT1
$=\mathbf{2 *} 32.8 * 10=1.5 \pi$
$\pi=\frac{2 * 32 \mathrm{~s}}{1.5}=\frac{656}{1.5}$
Weeks No. 19-20
Design of Journal Bearings

Introduction:

A bearing is a machine element which support another moving machine element (known as journal). It permits a relative motion between the contact surfaces of the members, while carrying the load. A little consideration will show that due to the relative motion between the contact surfaces, a certain amount of power is wasted in overcoming frictional resistance and if the rubbing surfaces are in direct contact, there will be rapid wear. In order to reduce frictional resistance and wear and in some cases to carry away the heat generated, a layer of fluid (known as lubricant) may be provided. The lubricant used to separate the journal and bearing is usually a mineral oil refined from petroleum, but vegetable oils, silicon oils, greases etc., may be used.

26.2. Classification of Bearings

Though the bearings may be classified in many ways, yet the following are important from the subject point of view:

1. Depending upon the direction of load to be supported. The bearings under this group are classified as: (a) Radial bearings, and (b) Thrust bearings. In radial bearings, the load acts
perpendicular to the direction of motion of the moving element as shown in Fig. 26.1 (a) and (b). In thrust bearings, the load acts along the axis of rotation as shown in Fig. 26.1 (c).
Note: These bearings may move in either of the directions as shown in Fig. 26.1.

Fig. 26.1. Radial and thrust bearings.
2. Depending upon the nature of contact. The bearings under this group are classified as: (a) Sliding contact bearings, and (b) Rolling contact bearings. In sliding contact bearings, as shown in Fig. 26.2 (a), the sliding takes place along the surfaces of contact between the moving element and the fixed element. The sliding contact bearings are also known as plain bearings.

Fig. 26.2. Sliding and rolling contact bearings.
In rolling contact bearings, as shown in Fig. 26.2 (b), the steel balls or rollers, are interposed between the moving and fixed elements. The balls offer rolling friction at two points for each ball or roller.

Terms used in Hydrodynamic Journal Bearing
A hydrodynamic journal bearing is shown in Fig. 26.7, in which O is the centre of the journal and O^{\prime} is the centre of the bearing. Let $\mathrm{D}=$ Diameter of the bearing,
$\mathrm{d}=$ Diameter of the journal, and $\mathrm{l}=$ Length of the bearing.
The following terms used in hydrodynamic journal bearing are important from the subject point of view :

1. Diametral clearance. It the difference between the diameters of the bearing and the journal. Mathematically,
diametral clearance, $\mathrm{c}=\mathrm{D}-\mathrm{d}$
Note : The diametral clearance (c) in a bearing should be small enough to produce the necessary velocity gradient, so that the pressure built up will support the load. Also the small clearance has the advantage of decreasing side leakage. However, the allowance must be made for manufacturing tolerances in the journal and bushing. A commonly used clearance in industrial machines is 0.025 mm per cm of journal diameter.
2. Radial clearance. It is the difference between the radii of the bearing and the journal. Mathematically, radial clearance:

$$
c_{1}=R-r=\frac{D-d}{2}=\frac{c}{2}
$$

3. Diametral clearance ratio. It is the ratio of the diametral clearance to the diameter of the journal. Mathematically, diametral clearance ratio:

$$
=\frac{c}{d}=\frac{D-d}{d}
$$

4. Eccentricity. It is the radial distance between the centre (O) of the bearing and the displaced centre $\left(O^{\prime}\right)$ of the bearing under load. It is denoted by e.
5. Minimum oil film thickness. It is the minimum distance between the bearing and the journal, under complete lubrication condition. It is denoted by h_{0} and occurs at the line of centres as shown in Fig. 26.7. Its value may be assumed as c/4.
6. Attitude or eccentricity ratio. It is the ratio of the eccentricity to the radial clearance. Mathematically, attitude or eccentricity ratio:

$$
\begin{equation*}
\varepsilon=\frac{e}{c_{1}}=\frac{c_{1}-h_{0}}{c_{1}}=1-\frac{h_{0}}{c_{1}}=1-\frac{2 h_{0}}{c} \tag{1}
\end{equation*}
$$

7. Short and long bearing. If the ratio of the length to the diameter of the journal (i.e. $1 / \mathrm{d}$) is less than 1 , then the bearing is said to be short bearing. On the other hand, if $1 / \mathrm{d}$ is greater than 1 , then the bearing is known as long bearing. Notes :
8. When the length of the journal (1) is equal to the diameter of the journal (d), then the bearing is called square bearing.
9. Because of the side leakage of the lubricant from the bearing, the pressure in the film is atmospheric at the ends of the bearing. The average pressure will be higher for a long bearing than for a short or square bearing. Therefore, from the stand point of side leakage, a bearing with a large $1 / \mathrm{d}$ ratio is preferable. However, space requirements, manufacturing, tolerances and shaft deflections are better met with a short bearing. The value of $1 / \mathrm{d}$ may be taken as 1 to 2 for general industrial machinery. In crank shaft bearings, the ($1 / \mathrm{d}$) ratio is frequently less than 1 .

محاضرات الاسابيع 21-24

CAM MECHANISMS:

1. Types, characteristics, and motions:

2. Basic cam motions.

3. Layout and design;manufacturing considerations
4. Force and torque analysis:

CAM MECHANISM TYPES, CHARACTERISTICS, AND MOTIONS:

Cam-and-follower mechanisms, as linkages, can be divided into two basic groups:

1. Planar cam mechanisms
2. Spatial cam mechanisms

In a planar cam mechanism, all the points of the moving links describe paths in parallel planes. In a spatial mechanism, that requirement is not fulfilled. The design of mechanisms in the two groups has much in common. Thus the fundamentals of planar cam mechanism design can be easily applied to spatial cam mechanisms, which is not the case in linkages. Examples of planar and spatial mechanisms are depicted in Fig. 40.1. Planar cam systems may be classified in four ways:
(1) according to the motion of the follower-reciprocating or oscillating;
(2) in terms of the kind of follower surface in contact-for example, knife-edged, flat-faced, curved-shoe, or roller;
(3) in terms of the follower motion-such as dwell-rise-dwell-return (D-R-D-R), dwell rise- return (D-R-R), rise-return-rise (R-R-R), or rise-dwell-rise (R-D-R); and (4) in terms of the constraining of the followerspring loading (Fig. 40.1«) or positive drive (Fig. 40.16). Plate cams acting with four different reciprocating
followers are depicted in Fig. 40.2 and with oscillating followers in Fig. 40.3. Further classification of reciprocating followers distinguishes whether the centerline of the follower stem is radial, as in Fig. 40.2, or offset, as in Fig. 40.4. Flexibility of the actual cam systems requires, in addition to the operating speed, some data concerning the dynamic properties of components in order to find discrepancies between rigid and deformable systems. Such data can be obtained from dynamic models. Almost every actual cam system can, with certain simplifications, be modeled by a one-degree-of-freedom system, shown in Fig. 40.5, where m_{e} denote, respectively, the input (coming from the shape of the cam profile) and the

(a)

(b)

FIGURE 40.1 (a) Planar cam mechanism of the internal-combustion-engine D-R-D-R type; (b) spatial cam mechanism of the $16-\mathrm{mm}$ film projector R-D-R type.
output of the system. The equivalent mass m_{e} of the system can be calculated from the following equation, based on the assumption that the kinetic energy of that mass equals the kinetic energy of all the links of the mechanism:

$$
m_{e}=\sum_{i=1}^{i=n} \frac{m_{i} v_{i}^{2}}{\dot{s}^{2}}+\sum_{i=1}^{i=n} \frac{I_{i} \omega_{i}^{2}}{\dot{s}^{2}}
$$

where ra, $=$ mass of link i
$V I=$ linear velocity of center of mass of z'th link
$I i=$ moment of inertia about center of mass for ith link
co, = angular velocity of ith link
5 = input velocity

