
Data Structures
Lecturer Assistant

Nadia Kubba

nadia.mohsin@uokufa.edu.iq

Outline

• What is an algorithm?

• Introduction to data structure

• Why data structure?

• Types of Data structures.

• Arrays.

• Representation of arrays in a memory.

What is an algorithm?

• An algorithm is a finite set of instructions that
accomplishes a particular task.

• A well-defined computational procedure that
takes some value, or a set of values, as input and
produces some values or a set of values as
output.

• Sequence of computational steps that transform
the input into the output

What is a Good Algorithm ?

• Efficient :

▫ Running Time.

▫ Space Used.

Introduction to data structure

• Data are simply a value or a set of values of
different types such as:

▫ String

▫ Integer

▫ Char

▫ etc.

• Structure is a way of organizing information.

Introduction to data structure

• In simple words we can define a data structure
as:

▫ A way of organizing data so that it can be used
effectively.

▫ Organizing the data in some way so that later on it
can be quickly and easily:

 Accessed

 Queried

 And Updated

Why data structure?

• Data structures are:

▫ Essential ingredient in creating fast and powerful
algorithms.

▫ Help to manage and organize the data.

Advantages of organized data

• The organized data has many advantages:

▫ Easy data retrieval.

▫ Less data storage space.

▫ Easy data operations, modification and deletion.

▫ Easy to manage.

▫ Avoid duplicate data.

▫ Efficient software systems.

How to choose suitable data structure

• For each set of data there are different methods
to organize these data in a particular data
structure.

• To choose suitable data structure, we must use
the following criteria:

▫ Data size and the required memory

▫ The dynamic nature of the data.

▫ The required time to obtain any data element
from the data structure.

Types of Data structures.

Primitive data structure

integer float character Boolean

Non-primitive
data structure

Linear data
structure

Arrays
Linked

list
Stack Queue

Non-Linear
data structure

Tree Graph

Primitive Data Structure

• Some data structures are built in to the
programming language itself which are readily
available to the programmer for its use and these
data structure are referred as primitive data
structure.

• For example, the most common primitive data
structures which are generally supported by almost
all programming languages include
▫ Integer.
▫ Float.
▫ Character.
▫ and Boolean.

Primitive data structure

Data structure Description Example

Integer Represents a number without
decimal points

1, 2, 45, 1000

Float Represents a number with decimal
points

1.5, 4.5, 3.8, 2567.24

Character Represents a single character A, B, g, h

Boolean Represent logical values either True
or False

Non-Primitive data structure

• The Non-Primitive data structure are user
(programmer) defined data structure which also referred
as user defined data structure.

• The Non-primitive data types are not pre-defined in the
programming language, and therefor the programmer
has to defined as per the program requirements.

• The Non-primitive data structure are derived from
primitive data types by combining two or more primitive
data structure. These Data structure divided as linear
and Non-linear data structure.

Linear & Non-Linear Data structure

• In Linear data structures, the data items are arranged in

memory in a linear sequential. Example Array, Stack

• In Non-Linear data structures, the data items are not

stored in memory in sequential. Example Tree, graph

Arrays

• An array is a linear data structure, it is collection of

elements of same data type. An array is linear data

structure because the array elements (Values) are

traversed in sequential manner.

• The simplest form of array is a one-dimensional array. It

is organized in a single row consisting of number of pre-

defined number of data elements

Representation of array in memory

• One Dimensional array

▫ Location(X[I])=Base Address+(I-1)

▫ Example:

 Find X[4] location in memory where Base Address=500

 Location(X[I])=Base Address+(I-1)

 Location(X[4])=500 +(4 -1)

 =503

Representation of array in memory

• Two Dimensional array

• Row –wise method:

Location (A[i , j]) = base address + N * (i-1) + (j-1)

• Column – wise method

Location (A[I,J]) = Base Address + M * (J -1) + (I -1)

• Example:

A[5,7], M=5, N=7, Base Address=900 Find A[4 , 6]

Representation of array in memory

By Row :

Location(A [4,6])= 900+7 *(4-1)+(6-1) = 900+21+5

=926

By Column:

Location(A [4,6])=900 +5 *(6 -1)+(4 -1) =900+25+3

=928

DATA STRUCTURES

LECTURE #2
Lecturer

Nadia Kubba

nadia.mohsin@uokufa.edu.iq

Outline

• Stack

• Stack Operations

• Arrays to implement stacks

• Stack Applications

Stack

 Stack is a linear data structure which follows a particular order in

which the operations are performed. The order is LIFO(Last In First

Out)

 Objects are inserted into a stack at any time, but only the most

recently inserted object (last one!) can be removed at any time

 New elements can be added and removed only at the top.

Data

Data

Data

Data

Top

Bottom

Data

Push

Data

Pop

Stack Operations

• The fundamental operations involved in a stack are

“push” and “pop”.

• push: adds a new element on the stack

• pop: removes an element from the stack

• Checking Conditions

• top>=StackSize-1 : Stack is full.. “Stack OVERFLOW”

• top== -1 or zero: Stack is empty..”Stack UNDERFLOW”

Example

• Instruction

•Pop()

•Push (A)

•Push (D)

•Push (F)

•POP ()

•POP()

•PUSH(X)

D

A P

W

S

F F

F X

PUSH operation

 Before inserting an element in a stack, we check whether the stack is full.

 If we try to insert the element in a stack, and the stack is full, then the overflow

condition occurs.

 When we initialize a stack, we set the value of top as -1 to check that the stack is

empty.

 When the new element is pushed in a stack, first, the value of the top gets

incremented, i.e., top=top+1, and the element will be placed at the new position

of the top.

 The elements will be inserted until we reach the max size of the stack.

The steps involved in the PUSH operation is given below:

POP operation

 Before deleting the element from the stack, we check whether the stack is empty.

 If we try to delete the element from the empty stack, then the underflow condition

occurs.

 If the stack is not empty, we first access the element which is pointed by the top

 Once the pop operation is performed, the top is decremented by 1, i.e., top=top-1.

The steps involved in the POP operation is given below:

Operation on a stack
• Example:

• Let us consider a stack with
integers 14, 23, 1, 4, 45 and
upper limit set to 5.

• Note: Every time you Push()
an element inside the Stack,
the TOP of the Stack gets
incremented by 1 and vice
versa.

• When the STACK is empty,
the BOTTOM and TOP of the
STACK are same and pointing
to the empty STACK.

• If you try to PUSH more
elements than the upper limit
of the STACK, it will cause in
an overflow of data and vice-
versa.

• Initially, the STACK is empty and the
TOP of the STACK is pointing to the
BOTTOM of the STACK.

• Stage [A]: We added 14 and TOP
now points to it.

• Stage [B]: 23 is PUSHed and TOP is
incremented by 1.

• Stage [C]: The STACK is FULL, as
the upper limit was set to 5.

• Stage [D]: The TOP most element
has been POPed. The TOP gets
decremented by 1.

• Stage [E]: 45, 4, 1 and 23 have been
POPed and TOP is now pointing to
the bottom most element

Stack functions

• To use a stack efficiently, we need to check the status of stack as

well. For the same purpose, the following functionality is added

to stacks

• peek() : get the top data element of the stack, without removing

it.

• isFull() : check if stack is full.

• isEmpty() : check if stack is empty.

Pushing elements on the stack

• Push operation adds a new element on the stack.

Algorithm

1- Start

2- Let stack [size]

3- let top=-1

4- if top<stack.size then

5- top=top+1

6- stack[top]=data

7- else

8- Print (“ Stack Is Full “, “Data Over flow”)

9- End

Popping Elements From Stack

• Pop operation removes a element from the stack.

Algorithm

1- Start

2- If Top>=0 then

3- print stack[top]

4- top=top-1

5- else

6- Print (“ Stack Is Empty , Data Under Flow “)

7- end

Stack Applications

• Web browser: stores the addresses of recently visited

sites on a stack. Each time a user visits a new site, the

address of the site is pushed into the stack of

addresses. Use the back button the user can pop pack

to previously visited sites.

• Text editors: powerful text editors keep text changes in

a stack. The user can use the undo mechanism to

cancel recent editing operations.

• Arithmetic expression: following to next slide

Implementation of Stack

•There are two ways to implement a stack:

1. Using array

2. Using linked list

Using arrays to implement stacks

• A natural way of implementing a stack is with an array.

• Top represents the index in the array at which the next

item pushed onto the stack is to be stored. This

increases by one when another item is pushed onto the

stack, and decreases by one when an item is popped.

• The stack is empty when the top =-1, and it is full if

the top pointer is greater than the maximum size of the

stack array. This is because top now lies beyond the

bounds of the array.

Thank you

DATA STRUCTURE

LECTURE #3

Lecturer

Nadia A Kubba

nadia.mohsin@uokufa.edu.iq

OUTLINE

• Arithmetic expressions

• Precedence ,primacy, priority

• Prefix, Postfix & Infix Notation

• Algorithm to convert infix to postfix

• Examples

Arithmetic expressions

•An arithmetic expression is one which is evaluated by

performing a sequence of arithmetic operations to obtain

a numeric value.

•Levels of Precedence for the usual five binary operations

on arithmetic operation Q .

•Highest: Exponentiation ^

•Next Highest: Multiplication * and division /

•Lowest: Addition + and subtraction -

Precedence ,primacy, priority

Prefix, Postfix & Infix Notation

• Prefix, Postfix & Infix Notation

• Infix : the operator is placed between operands.

• Example: (A+B)*C parentheses necessary

• Prefix: the operator is placed before the operands

• Example: *+ABC

• Postfix (Reveres polish notation): the operator is placed after the operands .

• Example: AB+C*

Why?

• Why to use PREFIX and POSTFIX notations when we have simple INFIX notation?

• INFIX notations are not as simple as they seem especially while evaluating them. To

evaluate an infix expression we need to consider Operators’ Priority and Associative

property

• Example:

• expression 3+5*4 evaluate to 32 i.e. (3+5)*4 or to 23 i.e. 3+(5*4).

• To solve this problem Precedence or Priority of the operators were defined. Operator

precedence governs evaluation order. An operator with higher precedence is applied

before an operator with lower precedence.

Algorithm to convert infix to postfix

• A summary of the rules follows:

1. Print operands as they arrive.

2. If the stack is empty or contains a left parenthesis on top, push the

incoming operator onto the stack.

3. If the incoming symbol is a left parenthesis, push it on the stack.

4. If the incoming symbol is a right parenthesis, pop the stack and print

the operators until you see a left parenthesis. Discard the pair of

parentheses.

5. If the incoming symbol has higher precedence than the top of the stack, push it on

the stack.

6. If the incoming symbol has equal precedence with the top of the stack, use

association. If the association is left to right, pop and print the top of the stack and

then push the incoming operator. If the association is right to left, push the incoming

operator.

7. If the incoming symbol has lower precedence than the symbol on the top of the

stack, pop the stack and print the top operator. Then test the incoming operator

against the new top of stack.

8. At the end of the expression, pop and print all operators on the stack. (No

parentheses should remain.)

Rules

•Four rules you should know to convert from infix to postfix

1. Priority of operands

2. No two operands of same priority can stay in a stack

3. Lowest priority can not be placed after highest priority

4. If the symbol is a close parenthesis then the operands in

between should be popped out the stack.

Example 1: (A+B)/D

Symbol Stack Postfix

((

A (A

+ (+ A

B (+ AB

) (+) AB+

/ / AB+

D / AB+D

AB+D/

Example 2: (A+B)/(D+E)

Symbol Stack Postfix

((

A (A

+ (+ A

B (+ AB

) (+) AB+

/ / AB+

(/(AB+

D /(AB+D

+ /(+ AB+D

E /(+ AB+DE

) /(+) AB+DE+

AB+DE+/

Example 3: A-B/(C*D^E)
Symbol Stack Postfix

A A

- - A

B - AB

/ -/ AB

(-/(AB

C -/(ABC

* -/(* ABC

D -/(* ABCD

^ -/(*^ ABCD

E -/(*^ ABCDE

) -/(*^) ABCDE^*/-

Examples of infix to prefix and postfix

Infix Prefix Postfix

(A+B)/D /+ABD AB+D/

(A+B)/(D+E) /+AB+DE AB+DE+/

(A-B/C+E)/(A+B) /+-A/BCE+AB ABC/-E+AB+/

B2-4*A*C -^B2**4AC B2^4A*C*-

A-B/(C*D^E) -A/B*C^DE ABCDE^*/-

Example: postfix expressions

 Postfix notation is another way of writing arithmetic expressions.

 In postfix notation, the operator is written after the two operands.

 infix: 2+5 postfix: 2 5 +

 Expressions are evaluated from left to right.

 Precedence rules and parentheses are never needed!!

Infix Postfix evaluation

2 - 3 * 4 + 5 234*-5+ -5

(2 - 3) * (4 + 5) 23-45+* -9

2- (3 * 4 +5) 234*5+- -15

Converting between notations

• 1. Infix to Prefix:

• (A+B)-(C*D)

• - Do the first brace: (A+B) ,the prefix is +AB

• - Do the second brace : (C*D) , the prefix is *CD

• - The end is operator-: +AB - *CD

• The prefix is: - + A B * C D

Converting between notations

• 2. Infix to Postfix:

• (A+B)-(C*D)

• - Do the first brace: (A+B) , the Postfix is AB+

• - Do the second brace : (C*D), the Postfix is CD*

• - The end is operator-: AB+ - CD*

• The postfix is A B + C D * -

Converting between notations

• 3. Prefix to Infix:

• + / *A B C D

• - Find the first operator: *, take 2 operands before the operator (A and B), the Infix is

(A * B)

• - Find the second operator : / , take 2 operands before the operator (A*B and C), the

Infix is ((A*B)/C)

• - find the third operator-: + , take 2 operands before the operator (((A*B)/C) and D), the

Infix is ((A*B)/C)+D)

DATA STRUCTURES

LECTURE #4
Lecturer

Nadia A. Kubba

nadia.mohsin@uokufa.edu.iq

OUTLINE

• What is a queue

• Queue operations

• Applications of Queue

• Types Of queue

• Circular Queue

• Double ended queue

• Priority queue

What is a queue

• Is a linear data structure.

• Contains elements that are inserted and removed according to

the first-in-first-out (FIFO) principle .

• The new elements are added at the end (“the rear”) and

elements are removed from the other end (“the front”).

 Front Rear

Queues Operations

• It supports two fundamental methods:

• Enqueue: inserts an element at the end of the queue

• Dequeue: removes an element from the front of the queue

• Checking Conditions:

• Queue Overflow :If rear = maxsize-1

• Queue Empty: If front = -1

Operations on Queues … Cont

•The queue has two pointers:
• FRONT: containing the location of the front element.

• REAR: containing the location of the rear element.

•The new element will add itself at the 'rear' end,

then Queue's ‘REAR' value increments by

one.

•The element leaves the queue from the 'front'

end, so the Queue's ‘FRONT' value

increments by one.

Using Arrays to Represent Queues

C B A

0 1 2 3 4 5

Rear Front

Enqueue (D)

Dequeue ()

D C B A

D C B A

Rear Front

Rear Front

Algorithm for inserting an element into a queue

Step1: Start

Step2: let queue[Size]

Step3: let front=-1 , Rear=-1 // Initialization Queue

Step4: If (rear = queue . Size -1) Then

 print (Queue Is Full“Data Data Over flow “)

 Else

 rear=rear+1

 queue[rear]=item

Step5: If front = -1 Then

 Front= 0

Step6: End

Algorithm for deleting an element from a queue

Step1: Start

Step 2: IF (front = -1) then

 Print (“ Queue Is Empty “ , “ Data Underflow “)

 ELSE

 print(queue[front])

Step 3: IF (front=rear) then

 front = -1 , rear=-1

 Else

 front =front+1

Step 4:End

Applications of Queue

•Used in scheduling the jobs to be processed by

the processor.

•A queue schedules the order of the print files to

be printed.

•A server maintains a queue of the client

requests to be processed

Queue Types

•Linear Queue

•Circular Queue

•Double ended Queue

•Priority Queue

Circular Queue

• A circular queue is a Queue but with a particular

implementation of a queue.

• They have a circular structure.

• There is no space lost.

• The properties of this type of queues is :-

• Front pointing to the first item.

• Rear pointing to the last item.

• when Rear arrives to the end of the queue make it wrap to the

beginning of queue (rear =0) , also this with front.

0 1 2 3 4 5 6 7

A B C D

Front = 0 Rear = 3

0 1 2 3 4 5 6 7

C D E F G H

Front = 2 Rear = 7

0 1 2 3 4 5 6 7

I C D E F G H

Rear = 0 Front = 2

Example

• Consider the following circular queue with size 5

1- Initially Rear =-1 Front = -1

2- Insert 10, Rear = 1 Front =1

3- Insert 50 Rear = 1 Front =0

0 1 2 3 4

0 1 2 3 4

10

Rear Front

0 1 2 3 4

10 50

Front Rear

4- Insert 20, Rear = 2, Front =0

5- Insert 70, Rear = 3, Front =0

6- Delete front, Rear = 3, Front =1

0 1 2 3 4

10 50 20

Front Rear

0 1 2 3 4

10 50 20 70

Front Rear

0 1 2 3 4

50 20 70

Front Rear

7- Insert 100, Rear = 4, Front =1

8- Insert 40, Rear =0, Front =1

9- Insert 140, Rear = 0, Front =1, As Front = Rear – 1 so the

queue is full (overflow)

0 1 2 3 4

50 20 70 100

Front Rear

0 1 2 3 4

40 50 20 70 100

Rear Front

0 1 2 3 4

40 50 20 70 100

Rear Front

10- Delete front, Rear = 0, Front = 2

11- Delete front, Rear = 0, Front =3

12- Delete front, Rear = 0, Front=4

0 1 2 3 4

40 20 70 100

Rear Front

0 1 2 3 4

40 70 100

Rear Front

0 1 2 3 4

40 100

Rear Front

Algorithm to insert an element in a circular queue

Step1: Start

Step2: p = (Rear+1) MOD CQueue.length;

Step3: If (p = Front) Then

 print(“ Queue Overflow ");

 else

 Rear = p;

 CQueue[Rear] = Item;

Step4: if (Front = -1)

 Front = 0;

Step5: End

Algorithm to delete an element from a circular

Step1: Start

Step2: If(Front =-1)

 print ("CQUEUE IS EMPTY")

 Else

 Print(CQueue[Front])

Step3: If (Front == Rear)

 Front = Rear = -1

 Else

 Front=(Front+1) Mod CQueue.length

Step4: END

Double Ended queue
• It is a linear list in which elements are added or

removed at either end but not in middle.

• A double-ended queue is a data structure that supports

the following operations:

• enq_front

• enq_back

• deq_front

• deq_back

Double Ended queue

• Double Ended Queue can be represented in two ways:

1) Input restricted De-Queue :- allows insertions at only one

end but allows deletions on both ends of the list .

2) Output-restricted de-queue:- allows deletions at only one

end but allows insertions at both ends of the list.

Priority queue

• A priority queue is a collection of elements such that each

element has been assigned a priority and the order in which

elements are deleted and processed comes from the following

• rules:

1. An element of higher priority is processed before any element

of lower priority.

2. Two elements with the same priority are processed according

to the order in which they were added to the queue.

DATA STRUCTURES

LECTURE #5
Lecturer

Nadia A. Kubba

nadia.mohsin@uokufa.edu.iq

OUTLINE

• What is a linked list

• Parts of a Linked List

• Architecture of Linked list

• Applications of linked list in computer science

• Advantages and disadvantages of Linked lists

• Array vs Linked List

• Operations On Linked List

• Types of linked list

• Singly linked list

What is a linked list
• It is another type of data structure which are

dynamically allocated.

• It is a collection of especially designed data elements

called nodes linked to one another by means of

pointers.

• Each node is divided into two parts first part contains

the Data and the second contains Pointer which points

to the next node.

DATA LINK
Stores the

actual data

Stores the address

of the next node

Parts of a Linked List

Head Node Node Node Null

Data

N

e

x

t

One node is made up of two parts:

some Data that it holds, and a

reference to the next node

Architecture of Linked lists
•The linked list is a set of nodes, each one in it

consists of two parts as follow:

• First Part: contains data (String, Integer, Etc)

• Second Part: Contains a pointer that refer to the next

address in the memory

10 1004 25 1008 18 1012 55 NULL

1001
1004 1008 1012

Node address

*Start

 1001

Example of a linked list

• START is used to store the address of
the first node

• START = 1 so the first data is stored at
address 1, which is H.

• The corresponding NEXT stores the
address of the next node

• NEXT = 4 The second data element
obtained from address 4 is E

• Next = 7 The third data element obtained
from address 7 is L

• We repeat this procedure until we reach

• a position where the NEXT entry
contains –1 or NULL as this would
denote the end of the linked list

Applications of linked list in computer

science
• Implementation of stacks and queues.

• Implementation of graphs : Adjacency list representation of

graphs is most popular which is uses linked list to store adjacent

vertices.

• Dynamic memory allocation : We use a linked list of free

blocks.

• Maintaining directory of names.

• Performing arithmetic operations on long integers

• Manipulation of polynomials by storing constants in the node of

linked list

• Representing sparse matrices

Advantages of Linked lists

• It is a dynamic data structure, i.e. a linked list can

grow and shrink in size during its lifetime.

• The nodes of linked list (elements) are stored at

different memory locations .

• Insertion and deletion in linked list is easy because it

does not requires shifting of elements in it.

Disadvantage of Linked List
• They use more memory because of the storage used by their

pointers.

• Nodes in a linked list must be read in order from the beginning

as linked lists are inherently sequential access.

• Nodes are stored noncontiguous, greatly increasing the time

periods required to access individual elements within the list.

• Difficulties arise in linked lists when it comes to reverse

traversing. For instance, singly linked lists are cumbersome to

navigate backwards, while doubly linked lists are somewhat

easier to read, memory is consumed in allocating space for a

back-pointer.

• Searching a particular element in a linked list is difficult and

also consuming time.

Array vs Linked List
Array Linked List

Fixed Size Dynamic Size

Insertions and deletions are

inefficient: elements are usually

shifted

Insertions and Deletions are efficient:

no shifting.

Random Access: efficient indexing No random access

Not suitable for operations requiring

accessing elements using index such

as sorting

No memory waste if the array is full

or almost full. Otherwise may result

in much memory waste

Since memory is dynamically

allocated (according to our need)

there is no waste of memory

Sequential access is faster [reason:

elements are in contiguous memory

locations]

Sequential access is slow [reason:

elements are not in contiguous

memory locations

Array vs Linked List cont.

Array Linked List

It is necessary to specify the number

of elements during declaration (during

compile time)

It is not necessary to specify the

number of elements during declaration

time (memory is allocated during run

time)

Occupies less memory for the same

number of elements.

Occupies more memory for the same

number of elements

Insertion elements at the front of the

array is expensive because existing

elements need to be shifted

Inserting new elements at any position

can be carried out easily

Operations On Linked List

•Creation: Creation operation is used to create a
linked list with one node.

• Insertion: Insertion operation is used to insert a
new node at any specified location in the linked
list.

•A new node may be inserted.

a) At the beginning of the linked list

b) At the end of the linked list

c) At any specified position in between in a linked list

•Deletion: Same as Above

Operations On Linked List cont.

• Traversing: is the process of going through all the

nodes from one end to another end of a linked list.

• Searching: usually searching operations is employed

not only while a data item is needed but in case of

insertion and deletion at specified location search

operation is performed before nodes can be inserted or

deleted.

Types of Linked List

•Singly linked list

•Doubly linked list

•Circular linked list

Thank You

