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Lecture One 

Number systems and operations 

 

 The study of number systems is important from the viewpoint of 

understanding how data are represented before they can be processed by any 

digital system including a digital computer. It is one of the most basic topics in 

digital electronics. In this chapter, we will discuss different number systems 

commonly used to represent data. We will begin the discussion with the decimal 

number system. Although it is not important from the viewpoint of digital 

electronics, a brief outline of this will be given to explain some of the underlying 

concepts used in other number systems. This will then be followed by the more 

commonly used number systems such as the binary, octal and hexadecimal 

number systems. 

 

1. Decimal numbers: 

    The decimal number system is a radix-10 number system and therefore has 

10 different digits or symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher 

numbers after ‘9’ are represented in terms of these 10 digits only. The process of 

writing higher-order numbers after ‘9’ consists in writing the second digit (i.e. ‘1’) 

first, followed by the other digits, one by one, to obtain the next 10 numbers from 

‘10’ to ‘19’. The next 10 numbers from ‘20’ to ‘29’ are obtained by writing the 

third digit (i.e. ‘2’) first, followed by digits ‘0’ to ‘9’, one by one.  

 The place values of different digits in a mixed decimal number, starting from 

the decimal point, are 100, 101, 102 and so on (for the integer part) and 10−1, 10−2, 

10−3 and so on (for the fractional part). 
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As an illustration, in the case of the decimal number 3586.265, the integer part 

3586 can be expressed as 

3586 = 6×100 +8×101+5×102 +3×103 = 6+80+500+3000 = 3586 

and the fractional part 265 can be expressed as 

265 = 2×10−1+6×10−2 +5×10−3 = 0.2+0.06+0.005 = 0.265 

 

2. Binary Numbers: 

The binary number system its two digits a base-two system. The two binary 

digits are 1 and 0 (1,0). 

    Binary weight              23  22  21   20 

Weight value               8   4    2    1 

A binary digit, called a bit, has two values 0 & 1. Each coefficient aj is 

multiplied by 2j , and the results are added to obtain the decimal equivalent of the 

number. For example, 

 

In general, a number expressed in a base-r system has coefficients multiplied 

by powers of r. 
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Table 1 

Decimal Binary (0,1) 
8 4 2 1 
23 22 21 20 

0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

10 1 0 1 0 
11 1 0 1 1 
12 1 1 0 0 
13 1 1 0 1 
14 1 1 1 0 
15 1 1 1 1 

 
      LSB (right-most bit) has a weight of 20 = 1. 

 MSB (left- most bit) has a weight of 23 = 8. 
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3. Octal numbers: 
The octal number system has a radix of 8 and therefore has eight distinct digits. 

All higher-order numbers are expressed as a combination of these on the same 

pattern as the one followed in the case of the binary and decimal number systems 

described above. 

 

Table 2 

Decimal  Octal  
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 10 
9 11 

10 12 
11 13 
12 14 
13 15 
14 16 
15 17 
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3. Hexadecimal Numbers: 
        The hexadecimal number system is a radix-16 number system and its 16 

basic digits are shown below. 

 

Table 3 

Decimal  Hexadecimal  
0 0 
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 

10 A 
11 B 
12 C 
13 D 
14 E 
15 F 
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Number Systems Conversions: 
 

1- Binary - to - Decimal Conversion: 
The decimal value of any binary number can be found by adding the 

weights of all bits that are 1 and discarding the weights of all bits that are 0. 

 

EX1. The decimal equivalent of the binary number (1001.0101)2 is determined as 

follows: 

• The integer part = 1001 

• The decimal equivalent=  

• The fractional part =0 .0101 

• Therefore, the decimal equivalent = 0 × 2−1 + 1 × 2−2 + 0 × 2−3 + 1× 2−4 = 0 

+ 0.25 + 0+ 0.0625 = 0.3125 

• Therefore, the decimal equivalent of (1001.0101)2=( 9.3125)10 

 

2- Octal - to - Decimal Conversion: 
The decimal equivalent of the octal number (137.21)8 is determined as 

follows: 

• The integer part = 137 

•  The decimal equivalent = 7 × 80 + 3 × 81 + 1 × 82 = 7 + 24 + 64 = 95 

•  The decimal equivalent = 2 × 8−1 + 1 × 8−2 = 0.265 

•  Therefore, the decimal equivalent of (137.21)8= (95.265)10 
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3- Hexadecimal - to - Decimal Conversion: 

The decimal equivalent of the hexadecimal number (1E0.2A)16 is 

determined as follows: 

•  The integer part = 1E0 

•  The decimal equivalent = 0 × 160 + 14 × 161 + 1 × 162 = 0 + 224 + 256 =480 

•  The fractional part = 2A 

•  The decimal equivalent = 2 × 16−1 + 10 × 16−2 = 0.164 

•  Therefore, the decimal equivalent of (1E0.2A)16 = (480.164)10 

 

4- Decimal-to-Binary Conversion: 

As outlined earlier, the integer and fractional parts are worked on 

separately. For the integer part, the binary equivalent can be found by successively 

dividing the integer part of the number by 2 and recording the remainders until the 

quotient becomes ‘0’. The remainders written in reverse order constitute the 

binary equivalent. For the fractional part, it is found by successively multiplying 

the fractional part of the decimal number by 2 and recording the carry until the 

result of multiplication is ‘0’. The carry sequence written in forward order 

constitutes the binary equivalent of the fractional part of the decimal number. If 

the result of multiplication does not seem to be heading towards zero in the case of 

the fractional part, the process may be continued only until the requisite number of 

equivalent bits has been obtained.  

This method of decimal–binary conversion is popularly known as the 

double-dabble method. The process can be best illustrated with the help of a 

division process as explained in the following example: 
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EX2. Convert the following numbers from decimal to binary:  

       (a) 19                                       (b) 45 

 

EX3. Convert (0.6875)10 to binary: 

 

 

 

       (0.6875)10 = (0.1011)2 

 

 

 

 

 

 Integer Fraction Coefficient 

0.6875*2 1+ 0.375 1 

0.375*2 0+ 0.75 0 

0.75*2 1+ 0.5 1 

0.5*2 1+ 0 1 
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5- Decimal - to - Octal Conversion: 

The process of decimal-to-octal conversion is similar to that of decimal-to-

binary conversion. The progressive division in the case of the integer part and the 

progressive multiplication while working on the fractional part here are by ‘8’ 

which is the radix of the octal number system. Again, the integer and fractional 

parts of the decimal number are treated separately. The process can be best 

illustrated with the help of an example. 

EX4. Convert (73.75)10 to octal  

1. Integer part  

 

 

 (73)10 = (111)8 

  

2. Fractional  

 

(73.75)10 = (111.6)8 

 

 

 

 

 

Dividend Remainder 

73/8 1 

9/8 1 

1/8 1 

 Integer Fraction Coefficient 

0.75*8 6+ 0 6 
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6- Decimal - to - Hexadecimal Conversion: 

The process of decimal-to-hexadecimal conversion is also similar. Since the 

hexadecimal number system has a base of 16, the progressive division and 

multiplication factor in this case is 16. The process is illustrated further with the 

help of an example. 

EX4.  Let us determine the hexadecimal equivalent of (82.25)10 

1. Integer part  

Dividend Remainder 

82/16 2 

5/16 5 

2. Fractional part  

 Integer Fraction Coefficient 

0.25*16 4+ 0 4 

 

Therefore, the hexadecimal equivalent of (82.25)10 = (52.4)16 

 

Binary–Octal and Octal–Binary Conversions: 

An octal number can be converted into its binary equivalent by replacing 

each octal digit with its three-bit binary equivalent. We take the three-bit 

equivalent because the base of the octal number system is 8 and it is the third 

power of the base of the binary number system, i.e. 2. All we have then to 

remember is the three-bit binary equivalents of the basic digits of the octal number 

system. A binary number can be converted into an equivalent octal number by 

splitting the integer and fractional parts into groups of three bits, starting from the 
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binary point on both sides. The 0s can be added to complete the outside groups if 

needed. 

 

EX5. Let us find the binary equivalent of (374.26)8 and the octal equivalent of 

(1110100.0100111)2 

1-  (374.26)8 = (?)2 

Octal 3 7 4 2 6 

Binary 011 111 100 010 110 

  

      (374.26)8 =(011111100.010110)2 

 

2- (1110100.0100111)2 =( ? )8 

                                   (  001   110   100 . 010  011   100  )2 

Binary 001 110 100 010 011 100 

Octal 1 6 4 2 3 4 

  

     (1110100.0100111)2= (164.234)8 

 

Hex–Binary and Binary–Hex Conversions: 

A hexadecimal number can be converted into its binary equivalent by 

replacing each hex digit with its four-bit binary equivalent. We take the four-bit 

equivalent because the base of the hexadecimal number system is 16 and it is the 

fourth power of the base of the binary number system. All we have then to 
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remember is the four-bit binary equivalents of the basic digits of the hexadecimal 

number system. A given binary number can be converted into an equivalent 

hexadecimal number by splitting the integer and fractional parts into groups of 

four bits, starting from the binary point on both sides. The 0s can be added to 

complete the outside groups if needed. 

EX6. Let us find the binary equivalent of (17E.F6)16 and the hex equivalent of 

(1011001110.011011101)2. 

1- (17E.F6)16 = (?)2  

Hex 1 7 E F 6 

Binary 0001 0111 1110 1111 0110 

 

     (17E.F6)16 =(101111110.1111011)2  

 

2- (1011001110.011011101)2 = (?)16 

                             (  0010  1100   1110 .  0110   1110  1000 )2 

Binary  0010 1100 1110 0110 1110 1000 

Hex  2 C  E  6 E 8 

 

(1011001110.011011101)2.=(2CE.6E8)16 

 

H.W.  Find the octal equivalent of (2F.C4)16 and the hex equivalent of  

(762.013)8 ? 
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Table 4 

Decimal Binary  Octal  Hexadecimal  

0 0000 0 0 

1 0001 1 1 

2 0010 2 2 

3 0011 3 3 

4 0100 4 4 

5 0101 5 5 

6 0110 6 6 

7 0111 7 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A  

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 

 

 

 

 

 

 

 



     

 

Binary Arithmetic: 

1- Binary Addition 

 

Ex.  Find: 

1)   (11+01)2=? 

 

2)  (110101+110111)2=? 

1 1 0 1 0 1 
+ 

1 1 0 1 1 1 
1 1 0 1 1 0 0 

 

 

2- Binary Subtraction 

 

 



     

 

EX.  Find  

1) (101-11)2=? 

 

2) (111010-11001)2=? 

1 1 1 0 1 0 
- 

   1 1 0 0 1 
   1 0 0 0 0 1 

3) (110101-101110)2=? 

1 1 0 1 0 1 
- 

                                                       1 0 1 1 1 0 
   0 0 0 1 1 1 

 

4) (1101-110111)2=? 

1 1 0 1 1 1 
- 

                                                             1 1 0 1 
- 1 0 1 0 1 0 

 

 

 

 



     

 

3- Binary Multiplication 

 

EX. Find 

1)  (11x11)2=? 

 

2)  (110101x11)2=?    

1 1 0 1 0 1 
×              1 1 
   1 1 0 1 0 1 

+ 1 1 0 1 0 1 
                                                     1 0 0 1 1 1 1 1    

 
3) (10011x101)2=? 

1 0 0 1 1 
×        1 0 1 
   1 0 0 1 1 

+ 0 0 0 0 0 
+ 1 0 0 1 1 

 1 0 1 1 1 1 1 
 

 

 

 



     

 

4-Binary Division 

This operation follows the same procedure as division in decimal number 
system. 

EX. Find: 

1)  (1 1 0 ÷11) =? 

 
 

2) 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟏𝟏 = ? 1 1 1 

 1 1    1 0 1 0 1 

- 1 1 
1 0 0 

- 1 1 
0 0 1 1 
- 1 1 

 0 0 
∴  𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟏𝟏 = 1 1 1  

 
3) 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟎𝟎 𝟏𝟏 =?       1 0 0 1 

                                            1 0 1     1 0 1 1 0 1 

- 1 0 1 
0 0 0 1 0 1 

- 1 0 1 
0 0 0 

∴  𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟎𝟎 𝟏𝟏 = 1 0 0 1 
 



     

 

1’s and 2’s Complement of Binary Numbers 
The l's complement and the 2's complement of a binary number are 

important because they permit the representation of negative numbers. The 

method of 2's complement arithmetic is commonly used in computers to handle 

negative numbers. 

 

Finding the 1's Complement 
The l's complement of a binary number is found by changing all 1s to 0s and all 

0s to 1s, as illustrated below: 

 
The simplest way to obtain the l's complement of a binary number with a digital 

circuit is to use parallel inverters (NOT circuits), as shown in Fig. below for an    

8-bit binary number 

 
 

Finding the 2' s Complement 
The 2's complement of a binary number is found by adding 1 to the LSB of the l's 

complement. 

 

2's complement = (l's complement) + 1 

 

 



     

 

EX. Find the 2's complement of 10110010. 

 
 

Unsigned and Signed Numbers: 
  
a) Unsigned Numbers:  
For an n-bit unsigned binary number, all n-bits are used to represent the 

magnitude of the number.  

Note:- **Cannot represent negative numbers **  

  
Unsigned Numbers 

 

b) Signed Numbers 
          Digital systems, such as the computer, must be able to handle both  positive 

and negative numbers. A signed binary number consists of both sign and 

magnitude information. The sign indicates whether a number is positive or 

negative, and the magnitude is the value of the number. There are three forms in 

which signed integer (whole) numbers can be represented in binary: sign 



     

 

magnitude, l's complement, and 2' complement. Of these, the 2's complement is 

the most important and the sign-magnitude is the least used 

 

The Sign Bit 

The left-most bit in a signed binary number is the sign bit, which tells you whether 

the number is positive or negative. A 0 sign bit indicates a positive number, and a 

1 sign bit indicates a negative number. 

 A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative 

number 

 

Sign-Magnitude Form 

When a signed binary number is represented in sign-magnitude, the leftmost bit is 

the sign bit and the remaining bits are the magnitude bits. The magnitude bits are 

in true (un-complemented) binary for both positive and negative numbers. For 

example, the decimal number + 25 is expressed as an 8-bit signed binary number 

using the sign-magnitude form as 00011001. 

The decimal number -25 is expressed as 1001100l. 

Notice that the only difference between + 25 and - 25 is the sign bit because the 

magnitude bits are in true binary for both positive and negative numbers. 

 

In the sign-magnitude form, a negative number has the same magnitude bits 

as the corresponding positive number but the sign bit is a 1 rather than a 

zero. 

 

 

 

 



     

 

EX. Express the decimal number - 39 as an 8-bit number in the sign-magnitude, 

1's complement, and 2's complement forms? 

SOL// First, write the 8-bit number for + 39. 

00100111 

In the sign-magnitude form, - 39 is produced by changing the sign bit to a 1 and 

leaving the magnitude bits as they are. The number is 

10100111 

In the 1's complement form, -39 is produced by taking the l's complement of +39 

(00100111). 

11011000 

In the 2's complement form, - 39 is produced by taking the 2's complement of 

+39 (00100111 ) as follows: 

 
 

 

 

 

 

 

 

 

 

 

 

 



     

 

The Decimal Value of Signed Numbers 
Sign-magnitude: Decimal values of positive and negative numbers in the sign-

magnitude form are determined by summing the weights in all the magnitude bit 

positions where there are 1s and ignoring those positions where there are zeros. 

The sign is determined by examination of the sign bit. 

 

EX. 

Determine the decimal value of this signed binary number expressed in sign-

magnitude: 

10010101 

SOL// 

The seven magnitude bits and their powers-of-two weights are as follows: 

 
Summing the weights where there are 1s, 

16 + 4 + 1 = 21 

The sign bit is 1; therefore, the decimal number is - 21. 

 

1's Complement:  

Decimal values of positive numbers in the l's complement form are determined by 

summing the weights in all bit positions where there are 1s and ignoring those 

positions where there are zeros. Decimal values of negative numbers are 

determined by assigning a negative value to the weight of the sign bit, summing 

all the weights where there are 1s, and adding 1 to the result. 

 



     

 

 
 

2’s Complement:  

Decimal values of positive and negative numbers in the 2's complement form are 

determined by summing the weights in all bit positions where there are 1's and 

ignoring those positions where there are zeros. The weight of the sign bit in a 

negative number is given a negative value. 

 

 

 

 

 

 



     

 

Example: 

Determine the decimal values of the signed binary numbers expressed in 2's 

complement: 

(a) 01010110       (b) 10101010 

 
Ex.Perform the following arithmetic operations in binary as an 8- bit  using signed 

-2's-complement representation for negative numbers 

a) (+6) + (+13) b) (-6) +(+13) 

c) (+6) + (-13) d) (-6) + (-13)  
e) (-6) - (-13)  
 

Sol.       a)  

+6 0 0 0 0 0 1 1 0  

+13
+19

 
0 0 0 0 1 1 0 1
0 0 0 1 0 0 1 1

 

 
  



     

 

b) In the 2's complement form, - 6 is produced by taking the 2's complement of 

+6 (00000110 )  

−6 1 1 1 1 1 0 1 0  

+13
+7

 
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1

 

Removing the end carry 
c) In the 2's complement form, - 13 is produced by taking the 2's complement of 

+13 (00001101 )  

+6 0 0 0 0 0 1 1 0 

−13
−7

 
1 1 1 1 0 0 1 1
1 1 1 1 1 0 0 1

 

 للتحقق من الناتج اما
−27 26 25 24 23 22 21 20

1 1 1 1 1 0 0 1
 

 
-128+64+32+16+8+1=-7  

 او
 The signed binary number 11111001 is negative because the leftmost bit is 1. Its 
2’s complement is 00000111, which is the binary equivalent of (+7). We therefore 
recognize the original negative number to be equal to -7. 

 
 

d)  

−6 1 1 1 1 1 0 1 0 

−13
−19

 
1 1 1 1 0 0 1 1
1 1 1 0 1 1 0 1

 

A carry out of the sign‐bit position is discarded 

 للتحقق من الناتج اما
−27 26 25 24 23 22 21 20

1 1 1 0 1 1 0 1
 

 
-128+64+32+8+4+1=-19  

 او
 The signed binary number 11101101 is negative because the leftmost bit is 1. Its 
2’s complement is 00010011, which is the binary equivalent of (+19). We 
therefore recognize the original negative number to be equal to -19. 
 

 

 



     

 

e) (-6) - (-13) The subtraction is changed to addition (-6) + (+13) 

−6 1 1 1 1 1 0 1 0  

+13
+7

 
0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1

 

Removing the end carry 
 

Binary Coded Decimal (BCD) 

 Binary coded decimal (BCD) is a way to express each of the decimal digits 

with a binary code. There are only ten code groups in BCD system, so it is very 

easy to convert between decimal and BCD. Because we like to read and write in 

decimal, the interfaces are keypad input and digital readout. 

The 8421code: 

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded 

decimal digit, 0 thought 9, is represented by a binary code of four bits. The 

designation 8421 indicated the binary weights of the four bits (23,22,21,20). The 

ease of conversion between 8421 code number and the familiar decimal numbers 

is the main advantage of this code. All you have to remember are the ten binary 

combinations that represent the ten decimal digits as shown in table below. The 

8421 code is predominant BCD code, and when we refer to BCD, we always mean 

the 8421 code unless otherwise stated. 

Binary decimal 

code (BCD) 
0 1 2 3 4 5 6 7 8 9 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

 

Invalid Codes:  

It may be realized that, with four bits, sixteen numbers (0000 through 1111) can 

be represented but that, in the 8421 code, only ten of these are used. The six code 



     

 

combinations that are not used (1010, 1011, 1100, 1101, 1110, 1111) are invalid in 

8421 BCD code. To express any decimal number in BCD, simply replace each 

decimal digit with the appropriate 4-bit code as shown by Example 

 

EX// Convert each of the following decimal numbers to BCD codes: 

a) 35      b) 98      c) 170      

Solution: 

a) 35                             b) 98                                 c) 170                            

   

 

//EX 

 

       3              5 

   0011          0101           

       9              8 

   1001          1000        

        1        7      0 

  0001   0111  0000 



     

 

BCD Addition 

BCD is a numerical code and can be used in arithmetic operation. Addition is the 

most important operation because the other three operations (subtraction, 

multiplication, and deviation) can be accomplished by use of the addition. Here, is 

how to add two BCD numbers 

1. Add the two BCD numbers, using the rules for binary addition.  

2. If a 4-bit sum is equal to or less than 9, it is a valid BCD number. 

3. If a 4-bit sum is greater than 9, or if a carry out of the four-bit group is 

generated, it is an invalid result. Add 6(0110) to 4-bit sum in order to skip the six 

invalid states and return the code to 8421. If a carry results when 6 is added, 

simply add the carry to the next 4-bit group.  

Ex. 

 

 

 



     

 

Ex. 
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Logic Gates 

 

Logic gates are electronic circuits that can be used to implement the most 

elementary logic expressions, also known as Boolean expressions. The logic gate is 

the most basic building block of combinational logic. There are three basic logic 

gates, namely the OR gate, the AND gate and the NOT gate. Other logic gates 

that are derived from these basic gates are the NAND gate, the NOR gate, the 

EXCLUSIVEOR gate and the EXCLUSIVE-NOR gate. 

 

1. OR Gate: 
An OR gate performs an ORing operation on two or more than two logic 

variables. The OR operation on two independent logic variables A and B is written 

as Y = A+B and reads as Y equals A OR B and not as A plus B. An OR gate is a 

logic circuit with two or more inputs and one output. The output of an OR gate is 

LOW only when all of its inputs are LOW. For all other possible input 

combinations, the output is HIGH. This statement when interpreted for a positive 

logic system means the following. The output of an OR gate is a logic ‘0’ only when 

all of its inputs are at logic ‘0’. For all other possible input combinations, the output 

is a logic ‘1’. Figure (1) shows the circuit symbol and the truth table of a two-input 

OR gate.  

  

 

 

 

 

 

 

The operation of a two-input OR gate is explained by the logic expression: 
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Y = A+B 

 
Fig. (1): the circuit symbol and the truth table  

of a two-input OR gate. 
 

Now let us look at the operation of an OR gate with pulse waveform inputs, 

keeping in mind its logical operation. Again, the important thing in the analysis of 

gate operation with pulse waveforms is the time relationship of all the waveforms 

involved. For example, in Fig.(2), inputs A and B are both HIGH (1) during time 

interval t1 making output X HIGH (1). During time interval t2, input A is LOW (0), 

but because input B is HIGH (1), the output is HIGH (1). Both inputs are LOW (0) 

during time interval t3 , so there is a LOW (0) output during this time. During time 

interval t4 , the output is HIGH (1) because input A is HIGH (1). 

 

 
Fig. (2): Example of OR gate operation with a timing diagram 

showing input and output relationships. 
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As an illustration, if we have four logic variables and we want to know the 

logical output of (A+B+C +D), then it would be the output of a four-input OR gate 

with A, B, C and D as its inputs. 

Figures 3(a) and (b) show the circuit symbol of three-input and four-input OR 

gates. Figure 3(c) shows the truth table of a three-input OR gate. Logic expressions 

explaining the functioning of three input and four-input OR gates are Y = A+B+C 

and Y = A+B+C +D 

The total number of possible combinations of binary inputs to a gate is 

determined by the following formula: 

N=2n  

where N is the number of possible input 

combinations and n is the number of input 

variables. To illustrate: 

For two input variables: N = 22 = 4 

combinations. 

For three input variables: N = 23 = 8 

combinations. 

         For four input variables: N = 24 = 16 

                           combinations. 
                                    

                                                                                                     Fig. (3) 

 

2. AND Gate: 
An AND gate is a logic circuit having two or more inputs and one output. The 

output of an AND gate is HIGH only when all of its inputs are in the HIGH state. 

In all other cases, the output is LOW. When interpreted for a positive logic system, 

this means that the output of the AND gate is a logic ‘1’ only when all of its inputs 

are in logic ‘1’ state. In all other cases, the output is logic ‘0’. 
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The AND operation on two independent logic variables A and B is written as: 

      Y = A.B 

and reads as Y equals A AND B and not as A multiplied by B. Here, A and B are 

input logic variables and Y is the output. An AND gate performs an ANDing 

operation 

 

 

 

  

 

             

 

Fig. (4): AND gate. 

 

Let's examine the waveform operation of an AND gate by looking at the 

inputs with respect to each other in order to determine the output level at any given 

time. In Fig.(5), inputs A and B are both HIGH (1) during the time interval, t1 

making output X HIGH (1) during this interval. During time interval t2 input A is 

LOW (0) and input B is HIGH (1), so the output is LOW (0). During time interval 

t3 , both inputs are HIGH (1), and therefore the output is HIGH (1). During time 

interval t4 , input A is HIGH 0) and input B is LOW (0), resulting in a LOW (0) 

output. Finally, during time interval t5 , input A is LOW (0), input B is LOW (0), 

and the output is therefore LOW (0). As you know, a diagram of input and output 

waveforms showing time relationships is called a timing diagram. 
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Fig. (5) 

 

3. NOT Gate: 
A NOT gate is a one-input, one-output logic circuit whose output is always 

the complement of the input. That is, a LOW input produces a HIGH output, and 

vice versa. When interpreted for a positive logic system, a logic ‘0’ at the input 

produces a logic ‘1’ at the output, and vice versa. It is also known as a 

‘complementing circuit’ or an ‘inverting circuit’. Figure 6 shows the circuit symbol 

and the truth table. 

 
Fig. (6): Circuit symbol and the truth table of a NOT circuit. 
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        The operation of an inverter (NOT circuit) can be expressed as follows:  

If the input variable is called A and the output variable is called X, then 

 

X = A 

This expression states that the output is the complement of the input, so if   

A= 0, then X = 1, and if A = 1, then X = 0. 

 

 
Fig. (7): Inverter operation. 

 

4. NAND Gate: 
NAND stands for NOT AND. An AND gate followed by a NOT circuit 

makes it a NAND gate [Fig.8 (a)]. Fig.8 (b) shows the circuit symbol of a two-input 

NAND gate. The truth table of a NAND gate is obtained from the truth table of an 

AND gate by complementing the output entries [Fig.8(c)]. The output of a NAND 

gate is a logic ‘0’ when all its inputs are a logic ‘1’. For all other input combinations, 

the output is a logic ‘1’. NAND gate operation is logically expressed as: 

 

 
 

In general, the Boolean expression for a NAND gate with more than two 

inputs can be written as: 
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Fig. (8): (a) Two-input NAND implementation using an AND gate and a NOT 

circuit, (b) the circuit symbol of a two-input NAND gate, and (c) the truth table 

 of a two-input NAND gate. 

 

 

5. NOR Gate: 

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a 

NOR gate [Fig. 9(a)]. The truth table of a NOR gate is obtained from the truth table 

of an OR gate by complementing the output entries. The output of a NOR gate is a 

logic ‘1’ when all its inputs are logic ‘0’. For all other input combinations, the output 

is a logic ‘0’. The output of a two-input NOR gate is logically expressed as: 
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Fig. (9): (a) Two-input NOR implementation using an OR gate and a NOT circuit, 

(b) the circuit symbol of a two-input NOR gate and (c) the truth table of a two-

input NOR gate. 

 

In general, the Boolean expression for a NOR gate with more than two inputs 

can be written as: 

 

 
 

 

THE EXCLUSIVE-OR AND EXCLUSIVE-NOR: 
        Exclusive-OR and exclusive-NOR gates are formed by a combination of 

other gates already discussed. However, because of their fundamental importance 

in many applications, these gates are often treated as basic logic elements with their 

own unique symbols. 

 

6. The Exclusive-OR Gate: 
Standard symbol for an exclusive-OR (XOR for short) gate is shown in Fig. 

(10). The XOR gate has only two inputs. 
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For an exclusive-OR gate, output X is HIGH when input A is LOW and input 

B is HIGH, or when input A is HIGH and input B is LOW: X is LOW when A and 

B are both HIGH or both LOW. 

 

The output of a two-input EX-OR gate is expressed as: 

 

 
 

 

 

 

 

 

Fig. (10): X-OR gate. 

 

7. The Exclusive-NOR Gate: 

Standard symbols for an exclusive-NOR (XNOR) gate are shown in Fig.(11). Like 

the XOR gate, an XNOR has only two inputs. The bubble on the output of the 

XNOR symbol indicates that its output is opposite that of the XOR gate. When the 

two input logic levels are opposite, the output of the exclusive-NOR gate is LOW. 

The operation can be stated as follows (A and B are inputs, X is the output): 

For an exclusive-NOR gate, output X is LOW when input A is LOW and 

input B is HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are 

both HIGH or both LOW. 
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The truth table of an EX-NOR gate is obtained from the truth table of an EX-

OR gate by complementing the output entries. Logically, 

 

 

Fig. (11): XNOR gate. 
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Example: 

Determine the output waveforms for the XOR gate and for the XNOR gate, 

given the input waveforms, A and B, in Figure below: 

 

 

Summary 
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H.W. 

Determine the output waveforms for the NAND gate and for the NOR gate, 

given the input waveforms, A and B, in Figure below: 

        

 

A 

 

B 

 

𝒚𝒚𝟏𝟏 

𝒚𝒚𝟐𝟐 
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BOOLEAN ALGEBRA and Logic Simplification 
 

BOOLEAN Operations and Expressions: 

                  Variable, complement, and literal are terms used in Boolean algebra.           

A variable is a symbol used to represent a logical quantity. Any single variable can 

have a 1 or a 0 value. The complement is the inverse of a variable and is indicated 

by a bar over variable (overbar). For example, the complement of the variable A is 

A If A = 1, then A = 0. If A = 0, then A = 1. The complement of the variable A is 

read as "not A" or "A bar."  

            Sometimes a prime symbol rather than an overbar is used to denote the 

complement of a variable; for 

example, B' indicates the 

complement of B.                                                 

Fig. (1): OR Gate. 

A literal is a variable or the complement of a variable.  

 

Boolean Addition: 
sum term is a sum of literals. In logic circuits, a sum term is produced by an OR 

operation with no AND operations involved. Some examples of sum terms are 

A + B 

 A + B,  

A +B + C, and  

A + B + C + D. 

 EX.1- Determine the values of  A, B, C, and D that make the sum term: 

A + B + C + D equal to 0. 

For the solution must the variables equal (0) therefore, 

A=0, B=1 so that B =0, C=0 and D=1 so that D=0  

A+B+C+D= 0+1+0+1 = 0+ 0+0+0= 0 
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Boolean Multiplication: 
In Boolean algebra, a product term is the product of literals. In logic circuits, 

a product term is produced by an AND operation with no OR operations involved. 

Some examples of product terms are: 

AB, AB, ABC, and ABCD.  

A product term is equal to 1 only if each of the literals in the term is 1. A product 

term is equal to 0 when one or more of the literals are 0. 

 

 EX.1- Determine the values of A, B, C, and D that make the product term ABCD 

equal to 1? 

For the solution to be 1, therefore A=1,B=0 so that B=1,C=1,and D=0 so that D=1. 

ABCD=1.0.1.0 =1.1.1.1=1 

 

EX.2- Evaluate the following expression when A=1 , B=0 , C=1 

F=C + CB + BA 

Sol. 

 
 

Laws and Rules of Boolean algebra: 
 

Laws of Boolean algebra: 
The basic laws of Boolean 

algebra-the commutative laws for 

addition and multiplication, the 

associative laws for addition and multiplication, and the distributive                               

law-are the same as in ordinary algebra. 

Fig. (2): And Gate. 
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Commutative Laws: 
The commutative law of addition for two variables is written as: 

A+B = B+A 

This law states that the order in which the variables are ORed makes no difference. 

Remember, in Boolean algebra as applied to logic circuits, addition and the OR 

operation are the same. (The symbol  ≡  means "equivalent to."). 

 

 

  

Fig. (3): Application of commutative law of addition. 

 

The commutative law of multiplication for two variables is: 

A.B = B.A 

This law states that the order in which the variables are ANDed makes no difference. 

Fig.(4), il1ustrates this law as applied to the AND gate. 

 

 
Fig. (4): Application of commutative law of multiplication. 

 

Associative Laws: 
The associative law of addition is written as follows for three variables: 

A + (B + C) = (A + B) + C 

This law states that when ORing more than two variables, the result is the same 

regardless of the grouping of the variables. Fig.(4), illustrates this law as applied to 

2-input OR gates. 
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Fig. (5): Application of associative law of addition. 

 

The associative law of multiplication is written as follows for three variables: 

A(BC) = (AB)C 

This law states that it makes no difference in what order the variables are 

grouped when ANDing more than two variables. Fig.(6) illustrates this law as 

applied to 2 -input AND gates. 

 
Fig. (6): Application of associative law of multiplication. 

 

Distributive Law: 
The distributive law is written for three variables as follows: 

A (B + C) = AB + AC 

This law states that ORing two or more variables and then ANDing the result 

with a single variable is equivalent to ANDing the single variable with each of the 

two or more variables and then ORing the products. The distributive law also 

expresses the process of factoring in which the common variable A is factored out 

of the product terms, for example, 

AB + AC = A (B + C) 

Fig.(7) illustrates the distributive law in terms of gates. 
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Fig. (7): Application of distributive law. 

 

Rules of Boolean Algebra: 
  Table 1 lists 12 basic rules that are useful in manipulating and simplifying 

Boolean expressions. Rules 1 through 9 will be viewed in terms of their application 

to logic gates. Rules 10 through 12 will be derived in terms of the simpler rules and 

the laws previously discussed. 

 

Table 1 Basic rules of Boolean algebra 

 
 

1. A+0=A 

  Fig. (8) 

X = A+0 = A 
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2. A+1=1 

Fig. (9)  

X = A+1 = 1 

3. A.0=0 

Fig. (10) 

X = A.0 = 0 

4. A.1=A 

Fig. (11) 

X = A.1 = A 

5. A+A=A 

Fig. (12) 

X = A+A = A 

 

6. A+A=1 

Fig. (13) 

X = A+A =  1 

7. A. A=A 

Fig. (14) 

X = A. A = A 
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8. A.A=0 

Fig. (15) 

9. A =A 

Fig. (16) 

X=A =A 

10.  A+AB=A 

A+AB = A (1+B)             Factoring (distributive law) 

           = A . 1                   Rule 2: (1 + B) = 1 

           = A                        Rule 4: A . 1 = A 

 

 

        The proof is shown in Table 2, which shows the truth table and the resulting 

logic circuit simplification: 

 
Fig. (17) 
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11.  A + AB = A + B 

This rule can be proved as follows: 

  A + AB = (A + AB) + AB                         Rule 10: A = A + AB 

               = (AA + AB) + AB                      Rule 7: A = AA 

               =AA +AB +AA +AB                  Rule 8: adding AA = 0 

               = (A + A)(A + B)                        Factoring 

               = 1. (A + B)                                 Rule 6: A + A = 1 

               =A + B                                        Rule 4: drop the 1 

 

The proof is shown in Table 3, which shows the truth table and the resulting logic 

circuit simplification. 

Table 3 

 
 

12.   (A + B)(A + C) = A + BC 

          This rule can be proved as follows: 

           It (A + B)(A + C)  = AA + AC + AB + BC                  Distributive law 

                          = A + AC + AB + BC                     Rule 7:  AA = A 

                           = A( 1 + C) + AB + BC       Factoring (distributive law) 

                          = A. 1 + AB + BC              Rule 2:  1 + C = 1  

                         = A(1 + B) + BC                  Factoring (distributive law) 

                         = A. 1 + BC                         Rule 2: 1 + B = 1 

                         = A + BC                             Rule 4: A . 1 = A 
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The proof is shown in Table 4, which shows the truth table and the resulting logic 

circuit simplification. 

Table 4 

 
 

Ex.1-Find the Boolean algebra expression for the following system 

 
Sol. 

 
Q=(ABC)+A(B+C) 

 

Ex.2- draw the circuit for   y =AC + BC + ABC 

Sol. 
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Ex.3- Simplify the following expression by use of Boolean rules. 

1) y = ABD+ ABD 

Sol.   

 
2) z =(A+B)(A+B) 

Sol.  

 
 

3) x = ACD + ABCD 

Sol.  

 
 

Ex.4- Minimize the following expression by use of Boolean rules. 

 
Sol. 

 



Boolean Algebra and Logic Simplification                                                          

 

 
H.W. Given the Boolean function y = ABC + ABC + ABC + ABC + ABC 

(a) Obtain the truth table of the function.  
(b) Draw the logical diagram using the original Boolean expression.  
(c) Simplify the function to a minimum number of literals using Boolean algebra.  
(d) Obtain the truth table of the function using the simplified expression.  
(e) Draw the logical diagram from the simplified expression and compare the total 
number of gates with the diagram of part (b).  
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DEMORGAN'S Theorems: 
DeMorgan, a mathematician who knew Boole, proposed two theorems that 

are an important part of Boolean algebra. In practical terms. DeMorgan's theorems 

provide mathematical verification of the equivalency of the NAND and negative-

OR gates and the equivalency of the NOR and negative-AND gates. 

One of DeMorgan's theorems is stated as follows: 

The complement of a product of variables is equal to the sum of the 

complements of the variables, 

Stated another way, 

The complement of two or more ANDed variables is equivalent to the 

OR of the complements of the individual variables. 

The formula for expressing this theorem for two variables is: 

 

XY = X + Y 

 

 

 

DeMorgan's second theorem is stated as follows: 

The complement of a sum of variables is equal to the product of the 

complements of the variables. 

Stated another way, 

The complement of two or more ORed variables is equivalent to the AND 

of the complements of the individual variables, 

The formula for expressing this theorem for two variables is: 

 

X + Y = X Y 

 

Fig.(18) shows the gate equivalencies and truth tables for the two equations above. 
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Fig. (18): Gate equivalencies and the corresponding truth  

          tables that illustrate DeMorgan's theorems. 

 

As stated, DeMorgan's theorems also apply to expressions in which there are 

more than two variables. The following examples illustrate the application of 

DeMorgan's theorems to 3-variable and 4-variable expressions. 

 

EX//   Apply DeMorgan's theorems to the expressions XYZ and X + Y + Z. 

 

XYZ = X + Y + Z 

X + y + Z = X Y Z 

 

Applying DeMorgan's Theorems: 

The following procedure illustrates the application of DeMorgan's theorems 

and Boolean algebra to the specific expression: 

 

A+BC+D(E+F) 
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Step 1. Identify the terms to which you can apply DeMorgan's theorems, and 

think of each term as a single variable. 

Let: 

A+BC  =X      and      D(E+F) =Y 

 

Step 2. Since X + Y = X Y, 

 

A+BC+D(E+F) = (A + BC) (D(E + F)) 

 

Step 3. Use rule 9 (A = A) to cancel the double bars over the left term (this 

is not part of DeMorgan's theorem). 

 

(A + BC) (D(E + F))  = (A + BC)(D(E + F )) 

 

Step 4. Applying DeMorgan's theorem to the second term, 

 

(A + BC)(D(E + F)) = (A + BC)(D + (E + F )) 

 

Step 5. Use rule 9 (A = A) to cancel the double bars over the E + F part of 

the term.  

 

(A + BC)(D + E + F) = (A + BC)(D + E + F) 

 

EX// Apply DeMorgan's theorems to each of the following expressions: 

 

(a) (A + B + C) D      (b) ABC + DEF        (c) AB + CD + EF 

SOL// 
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Standard Forms of Boolean Expressions: 
All Boolean expressions, regardless of their form, can be converted into either 

of two standard forms: the sum-of-products form or the product-of sums form. 

Standardization makes the evaluation, simplification, and implementation of 

Boolean expressions much more systematic and easier. 

A binary variable may appear either in its normal form (x) or in its 

complement form (x). Now consider two binary variables x and y combined with 

an AND operation. Since each variable may appear in either form, there are four 

possible combinations: x y , x y, x y, and x y. Each of these four AND terms is 

called a minterm, or a standard product. In a similar manner, n variables can be 

combined to form 2n minterms. The 2n different minterms may be determined by a 

method similar to the one shown in Table 2  for three variables.  

Each minterm is obtained from an AND term of the n variables, with each 

variable being primed if the corresponding bit of the binary number is a = 0 and 

unprimed if a = 1. A symbol for each minterm is also shown in the table and is of 

the form mj, where the subscript j denotes the decimal equivalent of the binary 

number of the minterm designated. 

In a similar fashion, n variables forming an OR term, with each variable being 

primed or unprimed, provide 2n possible combinations, called maxterms, or standard 

sums. The eight maxterms for three variables, together with their symbolic 

designations, are listed in Table 2. Any 2n maxterms for n variables may be 

determined similarly. It is important to note that (1) each maxterm is obtained from 

an OR term of the n variables, with each variable being unprimed if the 

corresponding bit is a = 0 and primed if a = 1, and (2) each maxterm is the 

complement of its corresponding minterm and vice versa. 

A Boolean function can be expressed algebraically from a given truth 

table by forming a minterm for each combination of the variables that 

produces a 1 in the function and then taking the OR of all those terms. 



 

 

For example, the function f1 in Table 2 is determined by expressing the 

combinations 001, 100, and 111 as x y z, x y  z, and xyz, respectively. Since each 

one of these minterms results in f1 = 1, we have 

f1 = x y z + x y z + xyz = m1 + m4 + m7 

 

Table 2, Minterms and Maxterms for Three Binary Variables 

X Y Z 
Minterms Maxterms 

Term Designation Term Designation 

0 0 0 X Y Z m0 X+Y+Z M0 

0 0 1 X Y Z m1 X+Y+Z M1 

0 1 0 X Y Z m2 X+Y+Z M2 

0 1 1 X Y Z m3 X+Y+Z M3 

1 0 0 X Y Z m4 X+Y+Z M4 

1 0 1 X Y Z m5 X+Y+Z M5 

1 1 0 X Y Z m6 X+Y+Z M6 

1 1 1 X Y Z m7 X+Y+Z M7 

 

 

Sum of Minterms (sum-of-products ' SOP' ): 
The minterms whose sum defines the Boolean function are those which give 

the 1's of the function in a truth table. 

 

EX// Express the Boolean function F = A + BC as a sum of minterms (sop). The 

function has three variables: A, B, and C.  

Sol. The first term A is missing two variables; therefore, 

A = A(B + B) = AB + AB 

This function is still missing one variable, so 

A = AB(C + C) + AB(C + C) 



 

 

= ABC + ABC + ABC + ABC 

The second term BC is missing one variable; hence, 

BC = BC(A + A) = ABC + ABC 

Combining all terms, we have 

F = A + BC 

 = ABC + ABC+ ABC + ABC + ABC + ABC 

But ABC appears twice, and according to theorem 1 (x + x = x), it is possible to 

remove one of those occurrences. Rearranging the minterms in ascending order, we 

finally obtain 

F = ABC + ABC + ABC + ABC + ABC 

        = m1 + m4 + m5 + m6 + m7 

When a Boolean function is in its sum‐of‐minterms form, it is sometimes 

convenient to express the function in the following brief notation: 

F(A, B, C) = ∑(1, 4, 5, 6, 7)  

The summation symbol ∑ stands for the ORing of terms 

An alternative procedure for deriving the minterms of a Boolean function is 

to obtain the truth table of the function directly from the algebraic expression and 

then read the minterms from the truth table. 

 A B C F 

 0 0 0 0 

 0 0 1 1 

 0 1 0 0 

 0 1 1 0 

          F = A + BC 1 0 0 1 

          F = m1 + m4 + m5 + m6 + m7   1 0 1 1 

          F(A, B, C) = ∑(1, 4, 5, 6, 7) 1 1 0 1 

F = ABC + ABC + ABC + ABC + ABC 1 1 1 1 

 



 

 

 

 

Product of Maxterms (product-of sums 'POS'): 
Each of the 22n functions of n binary variables can be also expressed as a 

product of maxterms. 

To express a Boolean function as a product of maxterms, it must first be 

brought into a form of OR terms. This may be done by using the distributive law,  

x + yz = (x + y)(x + z). Then any missing variable x in each OR term is ORed with 

x x The procedure is clarified in the following example. 

 

EX// Express the Boolean function F = xy +  x z as a product of maxterms(pos). 

Sol. First, convert the function into OR terms by using the distributive law: 

F = xy + xz = (xy + x)(xy + z) 

= (x + x)(y + x)(x + z)(y + z) 

= (x + y)(x + z)(y + z) 

The function has three variables: x, y, and z. Each OR term is missing one variable; 

therefore, 

x + y = x + y + zz = ( x+ y + z)(x+ y + z) 

x + z = x + z + yy = (x + y + z)(x + y + z) 

y + z = y + z + xx = (x + y + z)(x+ y + z) 

Combining all the terms and removing those which appear more than once, we 

finally obtain 

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z) 

=    M0                 M2             M4          M5 

A convenient way to express this function is as follows: 

F(x, y, z) = Π(0, 2, 4, 5) 

The product symbol, Π, denotes the ANDing of maxterms; the numbers are the 

indices of the maxterms of the function 



 

 

An alternative procedure for deriving the maxterms of a Boolean function is 

to obtain the truth table of the function directly from the algebraic expression and 

then read the maxterms from the truth table. 

 X Y Z F 

 0 0 0 0 

 0 0 1 1 

 0 1 0 0 

 0 1 1 1 

F = xy +  xz 1 0 0 0 

F = M0 M2  M4  M5 1 0 1 0 

F(x, y, z) = Π(0, 2, 4, 5) 1 1 0 1 

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z) 1 1 1 1 

 

 

 

Conversion between Canonical Forms: 
The complement of a function expressed as the sum of minterms equals the 

sum of minterms missing from the original function. This is because the original 

function is expressed by those minterms, which make the function equal to 1, 

whereas its complement is a 1 for those minterms for which the function is a 0. As 

an example, consider the function: 

F(A, B, C) = ∑(1, 4, 5, 6, 7) 

This function has a complement that can be expressed as: 

F (A, B, C) = ∑(0, 2, 3) = m0 + m2 + m3 

Now, if we take the complement of F by DeMorgan’s theorem, we obtain F 

in a different form: 

F = (m0 + m2 + m3) = m0 . m2 . m3 = M0M2M3 = Π(0, 2, 3) 



 

 

The last conversion follows from the definition of minterms and maxterms as 

shown in Table 2 . From the table, it is clear that the following relation holds: 

mj = Mj 

That is, the maxterm with subscript j is a complement of the minterm 

with the same subscript j and vice versa. 

 

H.W.1- Express the Boolean function F = AB + BC + AC as a sum of minterms. 

The function has three variables: A, B, and C.  

 

H.W.2- Find (POS, SOP) from truth table that given bellow 

A B C F 

0 0 0 1 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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KARNAUGH MAPS 

Karnaugh mapping is a method used to simplify a truth table using sum of 

products or product of sums along with simultaneous optimization of the output 

function. Karnaugh maps are the graphical equivalent of a truth table. In other 

words, Karnaugh maps are an easy way of designing and optimizing a circuit from 

a truth table. 

Rules for K-Maps 

1. Each cell with a 1 must be included in at least one group. 

2. Try to form the largest possible groups. 

3. Try to end up with as few groups as possible. 

4. Groups may be in sizes that are powers of 2: 20 = 1, 21 = 2, 22= 4, 23 =8,  

      24 = 16, ... 

5. Groups may be square or rectangular only (including wraparound at the 

     grid edges). No diagonals or zig-zags can be used to form a group. 

6. The larger a group is, the more redundant inputs there are: 

i. A group of 1 has no redundant inputs. 

ii. A group of 2 has 1 redundant input. 

iii. A group of 4 has 2 redundant inputs. 

iv. A group of 8 has 3 redundant inputs. 

v. A group of 16 has 4 redundant inputs 
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TWO-VARIABLE KARNAUGH MAP: 

The two-variable map is shown in Fig. 1 (a). There are four minterms for two 

variables; hence, the map consists of four squares, one for each minterm. The map 

is redrawn in (b) to show the relationship between the squares and the two variables 

x and y . The 0 and 1 marked in each row and column designate the values of 

variables. Variable x  appears primed in row 0 and unprimed in row 1. Similarly, y 

appears primed in column 0 and unprimed in column 1.  

If we mark the squares whose minterms belong to a given function, the two-

variable map becomes another useful way to represent any one of the 16 Boolean 

functions of two variables. As an example, the function xy is shown in Fig. 1 (a). 

Since xy is equal to m3 , a 1 is placed inside the square that belongs to m3. Similarly, 

the function x + y is represented in the map of Fig. 1 (b) by three squares marked 

with 1’s. These squares are found from the minterms of the function: 

  m1 + m2 + m3 = x y + x y+ xy = x + y 

 

         

Two-variable K-map. 

A B f =1 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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Fig 2 

The 3-Variable Karnaugh Map 

The 3-variable Karnaugh map is an array of eight cells. as shown in Fig.(3). In this 

case, A, B, and C are used for the variables although other letters could be used. 

 

Fig3: three variable K-map 
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EX//  Simplify the Boolean function 

F (x, y, z) = ∑(2, 3, 4, 5) 

 loop1= X Y Z + X Y Z= x y 

 loop2= x y z + x y z =x y 

 

Map for Example , F (x, y, z) = ∑(2, 3, 4, 5) = x y + x y 

 Ex//  Simplify the Boolean function: 

F (x, y, z) = ∑(3, 4, 6, 7) 

 loop1= x y z+ x y z = y z 

 loop2= x y z+ x y z = x z 
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f= Y Z+X Z 

EX//  Simplify the Boolean function   F (x, y, z) = ∑(0, 2, 4, 5, 6) 

 loop1= x y z+ x y z + x y z + x y z = z 

 loop2 = x y z + x y z = x y 

 

 

F=Z+X Y 
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EX//  Simplify by using K-map: 

 

 

  

 

EX//  Simplify f =∑(1,2,3,4,5,6): 

  loop1 = A B C + A B C =A B 

loop2 = A B C + A B C = A C 

loop3 = A B C + A B C = B C 

A B C Y 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 
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FOUR-VARIABLE K-MAP  

 The map for Boolean functions of four binary variables (w, x, y, z ) is shown 

in Fig. 8 .In Fig. 8(a) are listed the 16 minterms and the squares assigned to each. In 

Fig.8(b), the map is redrawn to show the relationship between the squares and the 

four variables. 
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Fig(8) four variables  
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Ex //Simplify the Boolean function 

F (w, x, y, z) = ∑(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) 

 

 

 

 

 

 

 

 

 

 

w x y z F 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 0 
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loop1= w x y z + w x y z + w x y z + w x y z + w x y z + w x y z + w x y z +w x yz  

= y 

loop2= w x y z + w x y z + w x y z + w x y z = w z 

loop3 = w x y z + w x y z + w x y z + w x y z = x z  

 f = y + w z + x z 

 

 

Ex // Simplify the Boolean function: 

F = A B C  + B C D  + A BCD + A B C  

 f = A B C(D+D) + B C D( A +A)+ A B C  D + A  B C ( D + D) 

 f = A B C D + A B C D +A B C D + A B C D + A B C D + A B C D + A B C D  
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A B C D F 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 
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loop1=A B C D+ A B C D+A B C D + A B C D = B C 

loop2= A B C D+ A B C D+A B C D + A B C D= BD 

loop3 = A B C D+ A B C D =ACD 

  f= B C+ B D +A C D 
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Don’t-care conditions: 

In most applications, we simply don’t care what value is assumed by the 

function for the unspecified minterms. For this reason, it is customary to call the 

unspecified minterms of a function don’t-care conditions. These don’t-care 

conditions can be used on a map to provide further simplification of the Boolean 

expression. 

A don’t-care minterm is a combination of variables whose logical value is not 

specified. Such a minterm cannot be marked with a 1 in the map, because it would 

require that the function always be a 1 for such a combination. Likewise, putting a 

0 on the square requires the function to be 0. To distinguish the don’t-care condition 

from 1’s and 0’s, an X is used. Thus, an X inside a square in the map indicates that 

we don’t care whether the value of 0 or 1 is assigned to F for the particular minterm. 

In choosing adjacent squares to simplify the function in a map, the don’t-care 

minterms may be assumed to be either 0 or 1. When simplifying the function, we 

can choose to include each don’t-care minterm with either the 1’s or the 0’s, 

depending on which combination gives the simplest expression. 

Ex//  Simplify the Boolean function 

F (w, x, y, z) = ∑(1, 3, 7, 11, 15) 

which has the don’t-care conditions 

d (w, x, y, z) = ∑(0, 2, 5) 
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