
 1 Lecture 1: Number Systems and Operations

Lecture One

Number systems and operations

 The study of number systems is important from the viewpoint of

understanding how data are represented before they can be processed by any

digital system including a digital computer. It is one of the most basic topics in

digital electronics. In this chapter, we will discuss different number systems

commonly used to represent data. We will begin the discussion with the decimal

number system. Although it is not important from the viewpoint of digital

electronics, a brief outline of this will be given to explain some of the underlying

concepts used in other number systems. This will then be followed by the more

commonly used number systems such as the binary, octal and hexadecimal

number systems.

1. Decimal numbers:

 The decimal number system is a radix-10 number system and therefore has

10 different digits or symbols. These are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. All higher

numbers after ‘9’ are represented in terms of these 10 digits only. The process of

writing higher-order numbers after ‘9’ consists in writing the second digit (i.e. ‘1’)

first, followed by the other digits, one by one, to obtain the next 10 numbers from

‘10’ to ‘19’. The next 10 numbers from ‘20’ to ‘29’ are obtained by writing the

third digit (i.e. ‘2’) first, followed by digits ‘0’ to ‘9’, one by one.

 The place values of different digits in a mixed decimal number, starting from

the decimal point, are 100, 101, 102 and so on (for the integer part) and 10−1, 10−2,

10−3 and so on (for the fractional part).

 2 Lecture 1: Number Systems and Operations

As an illustration, in the case of the decimal number 3586.265, the integer part

3586 can be expressed as

3586 = 6×100 +8×101+5×102 +3×103 = 6+80+500+3000 = 3586

and the fractional part 265 can be expressed as

265 = 2×10−1+6×10−2 +5×10−3 = 0.2+0.06+0.005 = 0.265

2. Binary Numbers:

The binary number system its two digits a base-two system. The two binary

digits are 1 and 0 (1,0).

 Binary weight 23 22 21 20

Weight value 8 4 2 1

A binary digit, called a bit, has two values 0 & 1. Each coefficient aj is

multiplied by 2j , and the results are added to obtain the decimal equivalent of the

number. For example,

In general, a number expressed in a base-r system has coefficients multiplied

by powers of r.

 3 Lecture 1: Number Systems and Operations

Table 1

Decimal Binary (0,1)
8 4 2 1
23 22 21 20

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

 LSB (right-most bit) has a weight of 20 = 1.

 MSB (left- most bit) has a weight of 23 = 8.

 4 Lecture 1: Number Systems and Operations

3. Octal numbers:
The octal number system has a radix of 8 and therefore has eight distinct digits.

All higher-order numbers are expressed as a combination of these on the same

pattern as the one followed in the case of the binary and decimal number systems

described above.

Table 2

Decimal Octal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 10
9 11

10 12
11 13
12 14
13 15
14 16
15 17

 5 Lecture 1: Number Systems and Operations

3. Hexadecimal Numbers:
 The hexadecimal number system is a radix-16 number system and its 16

basic digits are shown below.

Table 3

Decimal Hexadecimal
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F

 6 Lecture 1: Number Systems and Operations

Number Systems Conversions:

1- Binary - to - Decimal Conversion:
The decimal value of any binary number can be found by adding the

weights of all bits that are 1 and discarding the weights of all bits that are 0.

EX1. The decimal equivalent of the binary number (1001.0101)2 is determined as

follows:

• The integer part = 1001

• The decimal equivalent=

• The fractional part =0 .0101

• Therefore, the decimal equivalent = 0 × 2−1 + 1 × 2−2 + 0 × 2−3 + 1× 2−4 = 0

+ 0.25 + 0+ 0.0625 = 0.3125

• Therefore, the decimal equivalent of (1001.0101)2=(9.3125)10

2- Octal - to - Decimal Conversion:
The decimal equivalent of the octal number (137.21)8 is determined as

follows:

• The integer part = 137

• The decimal equivalent = 7 × 80 + 3 × 81 + 1 × 82 = 7 + 24 + 64 = 95

• The decimal equivalent = 2 × 8−1 + 1 × 8−2 = 0.265

• Therefore, the decimal equivalent of (137.21)8= (95.265)10

 7 Lecture 1: Number Systems and Operations

3- Hexadecimal - to - Decimal Conversion:

The decimal equivalent of the hexadecimal number (1E0.2A)16 is

determined as follows:

• The integer part = 1E0

• The decimal equivalent = 0 × 160 + 14 × 161 + 1 × 162 = 0 + 224 + 256 =480

• The fractional part = 2A

• The decimal equivalent = 2 × 16−1 + 10 × 16−2 = 0.164

• Therefore, the decimal equivalent of (1E0.2A)16 = (480.164)10

4- Decimal-to-Binary Conversion:

As outlined earlier, the integer and fractional parts are worked on

separately. For the integer part, the binary equivalent can be found by successively

dividing the integer part of the number by 2 and recording the remainders until the

quotient becomes ‘0’. The remainders written in reverse order constitute the

binary equivalent. For the fractional part, it is found by successively multiplying

the fractional part of the decimal number by 2 and recording the carry until the

result of multiplication is ‘0’. The carry sequence written in forward order

constitutes the binary equivalent of the fractional part of the decimal number. If

the result of multiplication does not seem to be heading towards zero in the case of

the fractional part, the process may be continued only until the requisite number of

equivalent bits has been obtained.

This method of decimal–binary conversion is popularly known as the

double-dabble method. The process can be best illustrated with the help of a

division process as explained in the following example:

 8 Lecture 1: Number Systems and Operations

EX2. Convert the following numbers from decimal to binary:

 (a) 19 (b) 45

EX3. Convert (0.6875)10 to binary:

 (0.6875)10 = (0.1011)2

 Integer Fraction Coefficient

0.6875*2 1+ 0.375 1

0.375*2 0+ 0.75 0

0.75*2 1+ 0.5 1

0.5*2 1+ 0 1

 9 Lecture 1: Number Systems and Operations

5- Decimal - to - Octal Conversion:

The process of decimal-to-octal conversion is similar to that of decimal-to-

binary conversion. The progressive division in the case of the integer part and the

progressive multiplication while working on the fractional part here are by ‘8’

which is the radix of the octal number system. Again, the integer and fractional

parts of the decimal number are treated separately. The process can be best

illustrated with the help of an example.

EX4. Convert (73.75)10 to octal

1. Integer part

 (73)10 = (111)8

2. Fractional

(73.75)10 = (111.6)8

Dividend Remainder

73/8 1

9/8 1

1/8 1

 Integer Fraction Coefficient

0.75*8 6+ 0 6

 10 Lecture 1: Number Systems and Operations

6- Decimal - to - Hexadecimal Conversion:

The process of decimal-to-hexadecimal conversion is also similar. Since the

hexadecimal number system has a base of 16, the progressive division and

multiplication factor in this case is 16. The process is illustrated further with the

help of an example.

EX4. Let us determine the hexadecimal equivalent of (82.25)10

1. Integer part

Dividend Remainder

82/16 2

5/16 5

2. Fractional part

 Integer Fraction Coefficient

0.25*16 4+ 0 4

Therefore, the hexadecimal equivalent of (82.25)10 = (52.4)16

Binary–Octal and Octal–Binary Conversions:

An octal number can be converted into its binary equivalent by replacing

each octal digit with its three-bit binary equivalent. We take the three-bit

equivalent because the base of the octal number system is 8 and it is the third

power of the base of the binary number system, i.e. 2. All we have then to

remember is the three-bit binary equivalents of the basic digits of the octal number

system. A binary number can be converted into an equivalent octal number by

splitting the integer and fractional parts into groups of three bits, starting from the

 11 Lecture 1: Number Systems and Operations

binary point on both sides. The 0s can be added to complete the outside groups if

needed.

EX5. Let us find the binary equivalent of (374.26)8 and the octal equivalent of

(1110100.0100111)2

1- (374.26)8 = (?)2

Octal 3 7 4 2 6

Binary 011 111 100 010 110

 (374.26)8 =(011111100.010110)2

2- (1110100.0100111)2 =(?)8

 (001 110 100 . 010 011 100)2

Binary 001 110 100 010 011 100

Octal 1 6 4 2 3 4

 (1110100.0100111)2= (164.234)8

Hex–Binary and Binary–Hex Conversions:

A hexadecimal number can be converted into its binary equivalent by

replacing each hex digit with its four-bit binary equivalent. We take the four-bit

equivalent because the base of the hexadecimal number system is 16 and it is the

fourth power of the base of the binary number system. All we have then to

 12 Lecture 1: Number Systems and Operations

remember is the four-bit binary equivalents of the basic digits of the hexadecimal

number system. A given binary number can be converted into an equivalent

hexadecimal number by splitting the integer and fractional parts into groups of

four bits, starting from the binary point on both sides. The 0s can be added to

complete the outside groups if needed.

EX6. Let us find the binary equivalent of (17E.F6)16 and the hex equivalent of

(1011001110.011011101)2.

1- (17E.F6)16 = (?)2

Hex 1 7 E F 6

Binary 0001 0111 1110 1111 0110

 (17E.F6)16 =(101111110.1111011)2

2- (1011001110.011011101)2 = (?)16

 (0010 1100 1110 . 0110 1110 1000)2

Binary 0010 1100 1110 0110 1110 1000

Hex 2 C E 6 E 8

(1011001110.011011101)2.=(2CE.6E8)16

H.W. Find the octal equivalent of (2F.C4)16 and the hex equivalent of

(762.013)8 ?

 13 Lecture 1: Number Systems and Operations

Table 4

Decimal Binary Octal Hexadecimal

0 0000 0 0

1 0001 1 1

2 0010 2 2

3 0011 3 3

4 0100 4 4

5 0101 5 5

6 0110 6 6

7 0111 7 7

8 1000 10 8

9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Binary Arithmetic:

1- Binary Addition

Ex. Find:

1) (11+01)2=?

2) (110101+110111)2=?

1 1 0 1 0 1
+

1 1 0 1 1 1
1 1 0 1 1 0 0

2- Binary Subtraction

EX. Find

1) (101-11)2=?

2) (111010-11001)2=?

1 1 1 0 1 0
-

 1 1 0 0 1
 1 0 0 0 0 1

3) (110101-101110)2=?

1 1 0 1 0 1
-

 1 0 1 1 1 0
 0 0 0 1 1 1

4) (1101-110111)2=?

1 1 0 1 1 1
-

 1 1 0 1
- 1 0 1 0 1 0

3- Binary Multiplication

EX. Find

1) (11x11)2=?

2) (110101x11)2=?

1 1 0 1 0 1
× 1 1
 1 1 0 1 0 1

+ 1 1 0 1 0 1
 1 0 0 1 1 1 1 1

3) (10011x101)2=?

1 0 0 1 1
× 1 0 1
 1 0 0 1 1

+ 0 0 0 0 0
+ 1 0 0 1 1

 1 0 1 1 1 1 1

4-Binary Division

This operation follows the same procedure as division in decimal number
system.

EX. Find:

1) (1 1 0 ÷11) =?

2) 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟏𝟏 = ? 1 1 1

 1 1 1 0 1 0 1

- 1 1
1 0 0

- 1 1
0 0 1 1
- 1 1

 0 0
∴ 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟏𝟏 = 1 1 1

3) 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟎𝟎 𝟏𝟏 =? 1 0 0 1

 1 0 1 1 0 1 1 0 1

- 1 0 1
0 0 0 1 0 1

- 1 0 1
0 0 0

∴ 𝟏𝟏 𝟎𝟎 𝟏𝟏 𝟏𝟏 𝟎𝟎 𝟏𝟏 ÷ 𝟏𝟏 𝟎𝟎 𝟏𝟏 = 1 0 0 1

1’s and 2’s Complement of Binary Numbers
The l's complement and the 2's complement of a binary number are

important because they permit the representation of negative numbers. The

method of 2's complement arithmetic is commonly used in computers to handle

negative numbers.

Finding the 1's Complement
The l's complement of a binary number is found by changing all 1s to 0s and all

0s to 1s, as illustrated below:

The simplest way to obtain the l's complement of a binary number with a digital

circuit is to use parallel inverters (NOT circuits), as shown in Fig. below for an

8-bit binary number

Finding the 2' s Complement
The 2's complement of a binary number is found by adding 1 to the LSB of the l's

complement.

2's complement = (l's complement) + 1

EX. Find the 2's complement of 10110010.

Unsigned and Signed Numbers:

a) Unsigned Numbers:
For an n-bit unsigned binary number, all n-bits are used to represent the

magnitude of the number.

Note:- **Cannot represent negative numbers **

Unsigned Numbers

b) Signed Numbers
 Digital systems, such as the computer, must be able to handle both positive

and negative numbers. A signed binary number consists of both sign and

magnitude information. The sign indicates whether a number is positive or

negative, and the magnitude is the value of the number. There are three forms in

which signed integer (whole) numbers can be represented in binary: sign

magnitude, l's complement, and 2' complement. Of these, the 2's complement is

the most important and the sign-magnitude is the least used

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether

the number is positive or negative. A 0 sign bit indicates a positive number, and a

1 sign bit indicates a negative number.

 A 0 sign bit indicates a positive number, and a 1 sign bit indicates a negative

number

Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the leftmost bit is

the sign bit and the remaining bits are the magnitude bits. The magnitude bits are

in true (un-complemented) binary for both positive and negative numbers. For

example, the decimal number + 25 is expressed as an 8-bit signed binary number

using the sign-magnitude form as 00011001.

The decimal number -25 is expressed as 1001100l.

Notice that the only difference between + 25 and - 25 is the sign bit because the

magnitude bits are in true binary for both positive and negative numbers.

In the sign-magnitude form, a negative number has the same magnitude bits

as the corresponding positive number but the sign bit is a 1 rather than a

zero.

EX. Express the decimal number - 39 as an 8-bit number in the sign-magnitude,

1's complement, and 2's complement forms?

SOL// First, write the 8-bit number for + 39.

00100111

In the sign-magnitude form, - 39 is produced by changing the sign bit to a 1 and

leaving the magnitude bits as they are. The number is

10100111

In the 1's complement form, -39 is produced by taking the l's complement of +39

(00100111).

11011000

In the 2's complement form, - 39 is produced by taking the 2's complement of

+39 (00100111) as follows:

The Decimal Value of Signed Numbers
Sign-magnitude: Decimal values of positive and negative numbers in the sign-

magnitude form are determined by summing the weights in all the magnitude bit

positions where there are 1s and ignoring those positions where there are zeros.

The sign is determined by examination of the sign bit.

EX.

Determine the decimal value of this signed binary number expressed in sign-

magnitude:

10010101

SOL//

The seven magnitude bits and their powers-of-two weights are as follows:

Summing the weights where there are 1s,

16 + 4 + 1 = 21

The sign bit is 1; therefore, the decimal number is - 21.

1's Complement:

Decimal values of positive numbers in the l's complement form are determined by

summing the weights in all bit positions where there are 1s and ignoring those

positions where there are zeros. Decimal values of negative numbers are

determined by assigning a negative value to the weight of the sign bit, summing

all the weights where there are 1s, and adding 1 to the result.

2’s Complement:

Decimal values of positive and negative numbers in the 2's complement form are

determined by summing the weights in all bit positions where there are 1's and

ignoring those positions where there are zeros. The weight of the sign bit in a

negative number is given a negative value.

Example:

Determine the decimal values of the signed binary numbers expressed in 2's

complement:

(a) 01010110 (b) 10101010

Ex.Perform the following arithmetic operations in binary as an 8- bit using signed

-2's-complement representation for negative numbers

a) (+6) + (+13) b) (-6) +(+13)

c) (+6) + (-13) d) (-6) + (-13)
e) (-6) - (-13)

Sol. a)

+6 0 0 0 0 0 1 1 0

+13
+19

0 0 0 0 1 1 0 1
0 0 0 1 0 0 1 1

b) In the 2's complement form, - 6 is produced by taking the 2's complement of

+6 (00000110)

−6 1 1 1 1 1 0 1 0

+13
+7

0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1

Removing the end carry
c) In the 2's complement form, - 13 is produced by taking the 2's complement of

+13 (00001101)

+6 0 0 0 0 0 1 1 0

−13
−7

1 1 1 1 0 0 1 1
1 1 1 1 1 0 0 1

 للتحقق من الناتج اما
−27 26 25 24 23 22 21 20

1 1 1 1 1 0 0 1

-128+64+32+16+8+1=-7

 او
 The signed binary number 11111001 is negative because the leftmost bit is 1. Its
2’s complement is 00000111, which is the binary equivalent of (+7). We therefore
recognize the original negative number to be equal to -7.

d)

−6 1 1 1 1 1 0 1 0

−13
−19

1 1 1 1 0 0 1 1
1 1 1 0 1 1 0 1

A carry out of the sign‐bit position is discarded

 للتحقق من الناتج اما
−27 26 25 24 23 22 21 20

1 1 1 0 1 1 0 1

-128+64+32+8+4+1=-19

 او
 The signed binary number 11101101 is negative because the leftmost bit is 1. Its
2’s complement is 00010011, which is the binary equivalent of (+19). We
therefore recognize the original negative number to be equal to -19.

e) (-6) - (-13) The subtraction is changed to addition (-6) + (+13)

−6 1 1 1 1 1 0 1 0

+13
+7

0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 1

Removing the end carry

Binary Coded Decimal (BCD)

 Binary coded decimal (BCD) is a way to express each of the decimal digits

with a binary code. There are only ten code groups in BCD system, so it is very

easy to convert between decimal and BCD. Because we like to read and write in

decimal, the interfaces are keypad input and digital readout.

The 8421code:

The 8421 code is a type of BCD (binary coded decimal) code. Binary coded

decimal digit, 0 thought 9, is represented by a binary code of four bits. The

designation 8421 indicated the binary weights of the four bits (23,22,21,20). The

ease of conversion between 8421 code number and the familiar decimal numbers

is the main advantage of this code. All you have to remember are the ten binary

combinations that represent the ten decimal digits as shown in table below. The

8421 code is predominant BCD code, and when we refer to BCD, we always mean

the 8421 code unless otherwise stated.

Binary decimal

code (BCD)
0 1 2 3 4 5 6 7 8 9

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

Invalid Codes:

It may be realized that, with four bits, sixteen numbers (0000 through 1111) can

be represented but that, in the 8421 code, only ten of these are used. The six code

combinations that are not used (1010, 1011, 1100, 1101, 1110, 1111) are invalid in

8421 BCD code. To express any decimal number in BCD, simply replace each

decimal digit with the appropriate 4-bit code as shown by Example

EX// Convert each of the following decimal numbers to BCD codes:

a) 35 b) 98 c) 170

Solution:

a) 35 b) 98 c) 170

//EX

 3 5

 0011 0101

 9 8

 1001 1000

 1 7 0

 0001 0111 0000

BCD Addition

BCD is a numerical code and can be used in arithmetic operation. Addition is the

most important operation because the other three operations (subtraction,

multiplication, and deviation) can be accomplished by use of the addition. Here, is

how to add two BCD numbers

1. Add the two BCD numbers, using the rules for binary addition.

2. If a 4-bit sum is equal to or less than 9, it is a valid BCD number.

3. If a 4-bit sum is greater than 9, or if a carry out of the four-bit group is

generated, it is an invalid result. Add 6(0110) to 4-bit sum in order to skip the six

invalid states and return the code to 8421. If a carry results when 6 is added,

simply add the carry to the next 4-bit group.

Ex.

Ex.

 Logic Gates

Logic Gates

Logic gates are electronic circuits that can be used to implement the most

elementary logic expressions, also known as Boolean expressions. The logic gate is

the most basic building block of combinational logic. There are three basic logic

gates, namely the OR gate, the AND gate and the NOT gate. Other logic gates

that are derived from these basic gates are the NAND gate, the NOR gate, the

EXCLUSIVEOR gate and the EXCLUSIVE-NOR gate.

1. OR Gate:
An OR gate performs an ORing operation on two or more than two logic

variables. The OR operation on two independent logic variables A and B is written

as Y = A+B and reads as Y equals A OR B and not as A plus B. An OR gate is a

logic circuit with two or more inputs and one output. The output of an OR gate is

LOW only when all of its inputs are LOW. For all other possible input

combinations, the output is HIGH. This statement when interpreted for a positive

logic system means the following. The output of an OR gate is a logic ‘0’ only when

all of its inputs are at logic ‘0’. For all other possible input combinations, the output

is a logic ‘1’. Figure (1) shows the circuit symbol and the truth table of a two-input

OR gate.

The operation of a two-input OR gate is explained by the logic expression:

 Logic Gates

Y = A+B

Fig. (1): the circuit symbol and the truth table

of a two-input OR gate.

Now let us look at the operation of an OR gate with pulse waveform inputs,

keeping in mind its logical operation. Again, the important thing in the analysis of

gate operation with pulse waveforms is the time relationship of all the waveforms

involved. For example, in Fig.(2), inputs A and B are both HIGH (1) during time

interval t1 making output X HIGH (1). During time interval t2, input A is LOW (0),

but because input B is HIGH (1), the output is HIGH (1). Both inputs are LOW (0)

during time interval t3 , so there is a LOW (0) output during this time. During time

interval t4 , the output is HIGH (1) because input A is HIGH (1).

Fig. (2): Example of OR gate operation with a timing diagram

showing input and output relationships.

 Logic Gates

As an illustration, if we have four logic variables and we want to know the

logical output of (A+B+C +D), then it would be the output of a four-input OR gate

with A, B, C and D as its inputs.

Figures 3(a) and (b) show the circuit symbol of three-input and four-input OR

gates. Figure 3(c) shows the truth table of a three-input OR gate. Logic expressions

explaining the functioning of three input and four-input OR gates are Y = A+B+C

and Y = A+B+C +D

The total number of possible combinations of binary inputs to a gate is

determined by the following formula:

N=2n

where N is the number of possible input

combinations and n is the number of input

variables. To illustrate:

For two input variables: N = 22 = 4

combinations.

For three input variables: N = 23 = 8

combinations.

 For four input variables: N = 24 = 16

 combinations.

 Fig. (3)

2. AND Gate:
An AND gate is a logic circuit having two or more inputs and one output. The

output of an AND gate is HIGH only when all of its inputs are in the HIGH state.

In all other cases, the output is LOW. When interpreted for a positive logic system,

this means that the output of the AND gate is a logic ‘1’ only when all of its inputs

are in logic ‘1’ state. In all other cases, the output is logic ‘0’.

 Logic Gates

The AND operation on two independent logic variables A and B is written as:

 Y = A.B

and reads as Y equals A AND B and not as A multiplied by B. Here, A and B are

input logic variables and Y is the output. An AND gate performs an ANDing

operation

Fig. (4): AND gate.

Let's examine the waveform operation of an AND gate by looking at the

inputs with respect to each other in order to determine the output level at any given

time. In Fig.(5), inputs A and B are both HIGH (1) during the time interval, t1

making output X HIGH (1) during this interval. During time interval t2 input A is

LOW (0) and input B is HIGH (1), so the output is LOW (0). During time interval

t3 , both inputs are HIGH (1), and therefore the output is HIGH (1). During time

interval t4 , input A is HIGH 0) and input B is LOW (0), resulting in a LOW (0)

output. Finally, during time interval t5 , input A is LOW (0), input B is LOW (0),

and the output is therefore LOW (0). As you know, a diagram of input and output

waveforms showing time relationships is called a timing diagram.

 Logic Gates

Fig. (5)

3. NOT Gate:
A NOT gate is a one-input, one-output logic circuit whose output is always

the complement of the input. That is, a LOW input produces a HIGH output, and

vice versa. When interpreted for a positive logic system, a logic ‘0’ at the input

produces a logic ‘1’ at the output, and vice versa. It is also known as a

‘complementing circuit’ or an ‘inverting circuit’. Figure 6 shows the circuit symbol

and the truth table.

Fig. (6): Circuit symbol and the truth table of a NOT circuit.

 Logic Gates

 The operation of an inverter (NOT circuit) can be expressed as follows:

If the input variable is called A and the output variable is called X, then

X = A

This expression states that the output is the complement of the input, so if

A= 0, then X = 1, and if A = 1, then X = 0.

Fig. (7): Inverter operation.

4. NAND Gate:
NAND stands for NOT AND. An AND gate followed by a NOT circuit

makes it a NAND gate [Fig.8 (a)]. Fig.8 (b) shows the circuit symbol of a two-input

NAND gate. The truth table of a NAND gate is obtained from the truth table of an

AND gate by complementing the output entries [Fig.8(c)]. The output of a NAND

gate is a logic ‘0’ when all its inputs are a logic ‘1’. For all other input combinations,

the output is a logic ‘1’. NAND gate operation is logically expressed as:

In general, the Boolean expression for a NAND gate with more than two

inputs can be written as:

 Logic Gates

Fig. (8): (a) Two-input NAND implementation using an AND gate and a NOT

circuit, (b) the circuit symbol of a two-input NAND gate, and (c) the truth table

 of a two-input NAND gate.

5. NOR Gate:

NOR stands for NOT OR. An OR gate followed by a NOT circuit makes it a

NOR gate [Fig. 9(a)]. The truth table of a NOR gate is obtained from the truth table

of an OR gate by complementing the output entries. The output of a NOR gate is a

logic ‘1’ when all its inputs are logic ‘0’. For all other input combinations, the output

is a logic ‘0’. The output of a two-input NOR gate is logically expressed as:

 Logic Gates

Fig. (9): (a) Two-input NOR implementation using an OR gate and a NOT circuit,

(b) the circuit symbol of a two-input NOR gate and (c) the truth table of a two-

input NOR gate.

In general, the Boolean expression for a NOR gate with more than two inputs

can be written as:

THE EXCLUSIVE-OR AND EXCLUSIVE-NOR:
 Exclusive-OR and exclusive-NOR gates are formed by a combination of

other gates already discussed. However, because of their fundamental importance

in many applications, these gates are often treated as basic logic elements with their

own unique symbols.

6. The Exclusive-OR Gate:
Standard symbol for an exclusive-OR (XOR for short) gate is shown in Fig.

(10). The XOR gate has only two inputs.

 Logic Gates

For an exclusive-OR gate, output X is HIGH when input A is LOW and input

B is HIGH, or when input A is HIGH and input B is LOW: X is LOW when A and

B are both HIGH or both LOW.

The output of a two-input EX-OR gate is expressed as:

Fig. (10): X-OR gate.

7. The Exclusive-NOR Gate:

Standard symbols for an exclusive-NOR (XNOR) gate are shown in Fig.(11). Like

the XOR gate, an XNOR has only two inputs. The bubble on the output of the

XNOR symbol indicates that its output is opposite that of the XOR gate. When the

two input logic levels are opposite, the output of the exclusive-NOR gate is LOW.

The operation can be stated as follows (A and B are inputs, X is the output):

For an exclusive-NOR gate, output X is LOW when input A is LOW and

input B is HIGH, or when A is HIGH and B is LOW; X is HIGH when A and B are

both HIGH or both LOW.

 Logic Gates

The truth table of an EX-NOR gate is obtained from the truth table of an EX-

OR gate by complementing the output entries. Logically,

Fig. (11): XNOR gate.

 Logic Gates

Example:

Determine the output waveforms for the XOR gate and for the XNOR gate,

given the input waveforms, A and B, in Figure below:

Summary

 Logic Gates

H.W.

Determine the output waveforms for the NAND gate and for the NOR gate,

given the input waveforms, A and B, in Figure below:

A

B

𝒚𝒚𝟏𝟏

𝒚𝒚𝟐𝟐

Boolean Algebra and Logic Simplification

BOOLEAN ALGEBRA and Logic Simplification

BOOLEAN Operations and Expressions:

 Variable, complement, and literal are terms used in Boolean algebra.

A variable is a symbol used to represent a logical quantity. Any single variable can

have a 1 or a 0 value. The complement is the inverse of a variable and is indicated

by a bar over variable (overbar). For example, the complement of the variable A is

A If A = 1, then A = 0. If A = 0, then A = 1. The complement of the variable A is

read as "not A" or "A bar."

 Sometimes a prime symbol rather than an overbar is used to denote the

complement of a variable; for

example, B' indicates the

complement of B.

Fig. (1): OR Gate.

A literal is a variable or the complement of a variable.

Boolean Addition:
sum term is a sum of literals. In logic circuits, a sum term is produced by an OR

operation with no AND operations involved. Some examples of sum terms are

A + B

 A + B,

A +B + C, and

A + B + C + D.

 EX.1- Determine the values of A, B, C, and D that make the sum term:

A + B + C + D equal to 0.

For the solution must the variables equal (0) therefore,

A=0, B=1 so that B =0, C=0 and D=1 so that D=0

A+B+C+D= 0+1+0+1 = 0+ 0+0+0= 0

Boolean Algebra and Logic Simplification

Boolean Multiplication:
In Boolean algebra, a product term is the product of literals. In logic circuits,

a product term is produced by an AND operation with no OR operations involved.

Some examples of product terms are:

AB, AB, ABC, and ABCD.

A product term is equal to 1 only if each of the literals in the term is 1. A product

term is equal to 0 when one or more of the literals are 0.

 EX.1- Determine the values of A, B, C, and D that make the product term ABCD

equal to 1?

For the solution to be 1, therefore A=1,B=0 so that B=1,C=1,and D=0 so that D=1.

ABCD=1.0.1.0 =1.1.1.1=1

EX.2- Evaluate the following expression when A=1 , B=0 , C=1

F=C + CB + BA

Sol.

Laws and Rules of Boolean algebra:

Laws of Boolean algebra:
The basic laws of Boolean

algebra-the commutative laws for

addition and multiplication, the

associative laws for addition and multiplication, and the distributive

law-are the same as in ordinary algebra.

Fig. (2): And Gate.

Boolean Algebra and Logic Simplification

Commutative Laws:
The commutative law of addition for two variables is written as:

A+B = B+A

This law states that the order in which the variables are ORed makes no difference.

Remember, in Boolean algebra as applied to logic circuits, addition and the OR

operation are the same. (The symbol ≡ means "equivalent to.").

Fig. (3): Application of commutative law of addition.

The commutative law of multiplication for two variables is:

A.B = B.A

This law states that the order in which the variables are ANDed makes no difference.

Fig.(4), il1ustrates this law as applied to the AND gate.

Fig. (4): Application of commutative law of multiplication.

Associative Laws:
The associative law of addition is written as follows for three variables:

A + (B + C) = (A + B) + C

This law states that when ORing more than two variables, the result is the same

regardless of the grouping of the variables. Fig.(4), illustrates this law as applied to

2-input OR gates.

Boolean Algebra and Logic Simplification

Fig. (5): Application of associative law of addition.

The associative law of multiplication is written as follows for three variables:

A(BC) = (AB)C

This law states that it makes no difference in what order the variables are

grouped when ANDing more than two variables. Fig.(6) illustrates this law as

applied to 2 -input AND gates.

Fig. (6): Application of associative law of multiplication.

Distributive Law:
The distributive law is written for three variables as follows:

A (B + C) = AB + AC

This law states that ORing two or more variables and then ANDing the result

with a single variable is equivalent to ANDing the single variable with each of the

two or more variables and then ORing the products. The distributive law also

expresses the process of factoring in which the common variable A is factored out

of the product terms, for example,

AB + AC = A (B + C)

Fig.(7) illustrates the distributive law in terms of gates.

Boolean Algebra and Logic Simplification

Fig. (7): Application of distributive law.

Rules of Boolean Algebra:
 Table 1 lists 12 basic rules that are useful in manipulating and simplifying

Boolean expressions. Rules 1 through 9 will be viewed in terms of their application

to logic gates. Rules 10 through 12 will be derived in terms of the simpler rules and

the laws previously discussed.

Table 1 Basic rules of Boolean algebra

1. A+0=A

 Fig. (8)

X = A+0 = A

Boolean Algebra and Logic Simplification

2. A+1=1

Fig. (9)

X = A+1 = 1

3. A.0=0

Fig. (10)

X = A.0 = 0

4. A.1=A

Fig. (11)

X = A.1 = A

5. A+A=A

Fig. (12)

X = A+A = A

6. A+A=1

Fig. (13)

X = A+A = 1

7. A. A=A

Fig. (14)

X = A. A = A

Boolean Algebra and Logic Simplification

8. A.A=0

Fig. (15)

9. A =A

Fig. (16)

X=A =A

10. A+AB=A

A+AB = A (1+B) Factoring (distributive law)

 = A . 1 Rule 2: (1 + B) = 1

 = A Rule 4: A . 1 = A

 The proof is shown in Table 2, which shows the truth table and the resulting

logic circuit simplification:

Fig. (17)

Boolean Algebra and Logic Simplification

11. A + AB = A + B

This rule can be proved as follows:

 A + AB = (A + AB) + AB Rule 10: A = A + AB

 = (AA + AB) + AB Rule 7: A = AA

 =AA +AB +AA +AB Rule 8: adding AA = 0

 = (A + A)(A + B) Factoring

 = 1. (A + B) Rule 6: A + A = 1

 =A + B Rule 4: drop the 1

The proof is shown in Table 3, which shows the truth table and the resulting logic

circuit simplification.

Table 3

12. (A + B)(A + C) = A + BC

 This rule can be proved as follows:

 It (A + B)(A + C) = AA + AC + AB + BC Distributive law

 = A + AC + AB + BC Rule 7: AA = A

 = A(1 + C) + AB + BC Factoring (distributive law)

 = A. 1 + AB + BC Rule 2: 1 + C = 1

 = A(1 + B) + BC Factoring (distributive law)

 = A. 1 + BC Rule 2: 1 + B = 1

 = A + BC Rule 4: A . 1 = A

Boolean Algebra and Logic Simplification

The proof is shown in Table 4, which shows the truth table and the resulting logic

circuit simplification.

Table 4

Ex.1-Find the Boolean algebra expression for the following system

Sol.

Q=(ABC)+A(B+C)

Ex.2- draw the circuit for y =AC + BC + ABC

Sol.

Boolean Algebra and Logic Simplification

Ex.3- Simplify the following expression by use of Boolean rules.

1) y = ABD+ ABD

Sol.

2) z =(A+B)(A+B)

Sol.

3) x = ACD + ABCD

Sol.

Ex.4- Minimize the following expression by use of Boolean rules.

Sol.

Boolean Algebra and Logic Simplification

H.W. Given the Boolean function y = ABC + ABC + ABC + ABC + ABC

(a) Obtain the truth table of the function.
(b) Draw the logical diagram using the original Boolean expression.
(c) Simplify the function to a minimum number of literals using Boolean algebra.
(d) Obtain the truth table of the function using the simplified expression.
(e) Draw the logical diagram from the simplified expression and compare the total
number of gates with the diagram of part (b).

DEMORGAN'S Theorems

DEMORGAN'S Theorems:
DeMorgan, a mathematician who knew Boole, proposed two theorems that

are an important part of Boolean algebra. In practical terms. DeMorgan's theorems

provide mathematical verification of the equivalency of the NAND and negative-

OR gates and the equivalency of the NOR and negative-AND gates.

One of DeMorgan's theorems is stated as follows:

The complement of a product of variables is equal to the sum of the

complements of the variables,

Stated another way,

The complement of two or more ANDed variables is equivalent to the

OR of the complements of the individual variables.

The formula for expressing this theorem for two variables is:

XY = X + Y

DeMorgan's second theorem is stated as follows:

The complement of a sum of variables is equal to the product of the

complements of the variables.

Stated another way,

The complement of two or more ORed variables is equivalent to the AND

of the complements of the individual variables,

The formula for expressing this theorem for two variables is:

X + Y = X Y

Fig.(18) shows the gate equivalencies and truth tables for the two equations above.

DEMORGAN'S Theorems

Fig. (18): Gate equivalencies and the corresponding truth

 tables that illustrate DeMorgan's theorems.

As stated, DeMorgan's theorems also apply to expressions in which there are

more than two variables. The following examples illustrate the application of

DeMorgan's theorems to 3-variable and 4-variable expressions.

EX// Apply DeMorgan's theorems to the expressions XYZ and X + Y + Z.

XYZ = X + Y + Z

X + y + Z = X Y Z

Applying DeMorgan's Theorems:

The following procedure illustrates the application of DeMorgan's theorems

and Boolean algebra to the specific expression:

A+BC+D(E+F)

DEMORGAN'S Theorems

Step 1. Identify the terms to which you can apply DeMorgan's theorems, and

think of each term as a single variable.

Let:

A+BC =X and D(E+F) =Y

Step 2. Since X + Y = X Y,

A+BC+D(E+F) = (A + BC) (D(E + F))

Step 3. Use rule 9 (A = A) to cancel the double bars over the left term (this

is not part of DeMorgan's theorem).

(A + BC) (D(E + F)) = (A + BC)(D(E + F))

Step 4. Applying DeMorgan's theorem to the second term,

(A + BC)(D(E + F)) = (A + BC)(D + (E + F))

Step 5. Use rule 9 (A = A) to cancel the double bars over the E + F part of

the term.

(A + BC)(D + E + F) = (A + BC)(D + E + F)

EX// Apply DeMorgan's theorems to each of the following expressions:

(a) (A + B + C) D (b) ABC + DEF (c) AB + CD + EF

SOL//

DEMORGAN'S Theorems

Standard Forms of Boolean Expressions:
All Boolean expressions, regardless of their form, can be converted into either

of two standard forms: the sum-of-products form or the product-of sums form.

Standardization makes the evaluation, simplification, and implementation of

Boolean expressions much more systematic and easier.

A binary variable may appear either in its normal form (x) or in its

complement form (x). Now consider two binary variables x and y combined with

an AND operation. Since each variable may appear in either form, there are four

possible combinations: x y , x y, x y, and x y. Each of these four AND terms is

called a minterm, or a standard product. In a similar manner, n variables can be

combined to form 2n minterms. The 2n different minterms may be determined by a

method similar to the one shown in Table 2 for three variables.

Each minterm is obtained from an AND term of the n variables, with each

variable being primed if the corresponding bit of the binary number is a = 0 and

unprimed if a = 1. A symbol for each minterm is also shown in the table and is of

the form mj, where the subscript j denotes the decimal equivalent of the binary

number of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being

primed or unprimed, provide 2n possible combinations, called maxterms, or standard

sums. The eight maxterms for three variables, together with their symbolic

designations, are listed in Table 2. Any 2n maxterms for n variables may be

determined similarly. It is important to note that (1) each maxterm is obtained from

an OR term of the n variables, with each variable being unprimed if the

corresponding bit is a = 0 and primed if a = 1, and (2) each maxterm is the

complement of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth

table by forming a minterm for each combination of the variables that

produces a 1 in the function and then taking the OR of all those terms.

For example, the function f1 in Table 2 is determined by expressing the

combinations 001, 100, and 111 as x y z, x y z, and xyz, respectively. Since each

one of these minterms results in f1 = 1, we have

f1 = x y z + x y z + xyz = m1 + m4 + m7

Table 2, Minterms and Maxterms for Three Binary Variables

X Y Z
Minterms Maxterms

Term Designation Term Designation

0 0 0 X Y Z m0 X+Y+Z M0

0 0 1 X Y Z m1 X+Y+Z M1

0 1 0 X Y Z m2 X+Y+Z M2

0 1 1 X Y Z m3 X+Y+Z M3

1 0 0 X Y Z m4 X+Y+Z M4

1 0 1 X Y Z m5 X+Y+Z M5

1 1 0 X Y Z m6 X+Y+Z M6

1 1 1 X Y Z m7 X+Y+Z M7

Sum of Minterms (sum-of-products ' SOP'):
The minterms whose sum defines the Boolean function are those which give

the 1's of the function in a truth table.

EX// Express the Boolean function F = A + BC as a sum of minterms (sop). The

function has three variables: A, B, and C.

Sol. The first term A is missing two variables; therefore,

A = A(B + B) = AB + AB

This function is still missing one variable, so

A = AB(C + C) + AB(C + C)

= ABC + ABC + ABC + ABC

The second term BC is missing one variable; hence,

BC = BC(A + A) = ABC + ABC

Combining all terms, we have

F = A + BC

 = ABC + ABC+ ABC + ABC + ABC + ABC

But ABC appears twice, and according to theorem 1 (x + x = x), it is possible to

remove one of those occurrences. Rearranging the minterms in ascending order, we

finally obtain

F = ABC + ABC + ABC + ABC + ABC

 = m1 + m4 + m5 + m6 + m7

When a Boolean function is in its sum‐of‐minterms form, it is sometimes

convenient to express the function in the following brief notation:

F(A, B, C) = ∑(1, 4, 5, 6, 7)

The summation symbol ∑ stands for the ORing of terms

An alternative procedure for deriving the minterms of a Boolean function is

to obtain the truth table of the function directly from the algebraic expression and

then read the minterms from the truth table.

 A B C F

 0 0 0 0

 0 0 1 1

 0 1 0 0

 0 1 1 0

 F = A + BC 1 0 0 1

 F = m1 + m4 + m5 + m6 + m7 1 0 1 1

 F(A, B, C) = ∑(1, 4, 5, 6, 7) 1 1 0 1

F = ABC + ABC + ABC + ABC + ABC 1 1 1 1

Product of Maxterms (product-of sums 'POS'):
Each of the 22n functions of n binary variables can be also expressed as a

product of maxterms.

To express a Boolean function as a product of maxterms, it must first be

brought into a form of OR terms. This may be done by using the distributive law,

x + yz = (x + y)(x + z). Then any missing variable x in each OR term is ORed with

x x The procedure is clarified in the following example.

EX// Express the Boolean function F = xy + x z as a product of maxterms(pos).

Sol. First, convert the function into OR terms by using the distributive law:

F = xy + xz = (xy + x)(xy + z)

= (x + x)(y + x)(x + z)(y + z)

= (x + y)(x + z)(y + z)

The function has three variables: x, y, and z. Each OR term is missing one variable;

therefore,

x + y = x + y + zz = (x+ y + z)(x+ y + z)

x + z = x + z + yy = (x + y + z)(x + y + z)

y + z = y + z + xx = (x + y + z)(x+ y + z)

Combining all the terms and removing those which appear more than once, we

finally obtain

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z)

= M0 M2 M4 M5

A convenient way to express this function is as follows:

F(x, y, z) = Π(0, 2, 4, 5)

The product symbol, Π, denotes the ANDing of maxterms; the numbers are the

indices of the maxterms of the function

An alternative procedure for deriving the maxterms of a Boolean function is

to obtain the truth table of the function directly from the algebraic expression and

then read the maxterms from the truth table.

 X Y Z F

 0 0 0 0

 0 0 1 1

 0 1 0 0

 0 1 1 1

F = xy + xz 1 0 0 0

F = M0 M2 M4 M5 1 0 1 0

F(x, y, z) = Π(0, 2, 4, 5) 1 1 0 1

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z) 1 1 1 1

Conversion between Canonical Forms:
The complement of a function expressed as the sum of minterms equals the

sum of minterms missing from the original function. This is because the original

function is expressed by those minterms, which make the function equal to 1,

whereas its complement is a 1 for those minterms for which the function is a 0. As

an example, consider the function:

F(A, B, C) = ∑(1, 4, 5, 6, 7)

This function has a complement that can be expressed as:

F (A, B, C) = ∑(0, 2, 3) = m0 + m2 + m3

Now, if we take the complement of F by DeMorgan’s theorem, we obtain F

in a different form:

F = (m0 + m2 + m3) = m0 . m2 . m3 = M0M2M3 = Π(0, 2, 3)

The last conversion follows from the definition of minterms and maxterms as

shown in Table 2 . From the table, it is clear that the following relation holds:

mj = Mj

That is, the maxterm with subscript j is a complement of the minterm

with the same subscript j and vice versa.

H.W.1- Express the Boolean function F = AB + BC + AC as a sum of minterms.

The function has three variables: A, B, and C.

H.W.2- Find (POS, SOP) from truth table that given bellow

A B C F

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Karnaugh Maps

KARNAUGH MAPS

Karnaugh mapping is a method used to simplify a truth table using sum of

products or product of sums along with simultaneous optimization of the output

function. Karnaugh maps are the graphical equivalent of a truth table. In other

words, Karnaugh maps are an easy way of designing and optimizing a circuit from

a truth table.

Rules for K-Maps

1. Each cell with a 1 must be included in at least one group.

2. Try to form the largest possible groups.

3. Try to end up with as few groups as possible.

4. Groups may be in sizes that are powers of 2: 20 = 1, 21 = 2, 22= 4, 23 =8,

 24 = 16, ...

5. Groups may be square or rectangular only (including wraparound at the

 grid edges). No diagonals or zig-zags can be used to form a group.

6. The larger a group is, the more redundant inputs there are:

i. A group of 1 has no redundant inputs.

ii. A group of 2 has 1 redundant input.

iii. A group of 4 has 2 redundant inputs.

iv. A group of 8 has 3 redundant inputs.

v. A group of 16 has 4 redundant inputs

Karnaugh Maps

TWO-VARIABLE KARNAUGH MAP:

The two-variable map is shown in Fig. 1 (a). There are four minterms for two

variables; hence, the map consists of four squares, one for each minterm. The map

is redrawn in (b) to show the relationship between the squares and the two variables

x and y . The 0 and 1 marked in each row and column designate the values of

variables. Variable x appears primed in row 0 and unprimed in row 1. Similarly, y

appears primed in column 0 and unprimed in column 1.

If we mark the squares whose minterms belong to a given function, the two-

variable map becomes another useful way to represent any one of the 16 Boolean

functions of two variables. As an example, the function xy is shown in Fig. 1 (a).

Since xy is equal to m3 , a 1 is placed inside the square that belongs to m3. Similarly,

the function x + y is represented in the map of Fig. 1 (b) by three squares marked

with 1’s. These squares are found from the minterms of the function:

 m1 + m2 + m3 = x y + x y+ xy = x + y

Two-variable K-map.

A B f =1

0 0 0

0 1 1

1 0 1

1 1 1

Karnaugh Maps

Fig 2

The 3-Variable Karnaugh Map

The 3-variable Karnaugh map is an array of eight cells. as shown in Fig.(3). In this

case, A, B, and C are used for the variables although other letters could be used.

Fig3: three variable K-map

Karnaugh Maps

EX// Simplify the Boolean function

F (x, y, z) = ∑(2, 3, 4, 5)

 loop1= X Y Z + X Y Z= x y

 loop2= x y z + x y z =x y

Map for Example , F (x, y, z) = ∑(2, 3, 4, 5) = x y + x y

 Ex// Simplify the Boolean function:

F (x, y, z) = ∑(3, 4, 6, 7)

 loop1= x y z+ x y z = y z

 loop2= x y z+ x y z = x z

Karnaugh Maps

f= Y Z+X Z

EX// Simplify the Boolean function F (x, y, z) = ∑(0, 2, 4, 5, 6)

 loop1= x y z+ x y z + x y z + x y z = z

 loop2 = x y z + x y z = x y

F=Z+X Y

Karnaugh Maps

EX// Simplify by using K-map:

EX// Simplify f =∑(1,2,3,4,5,6):

 loop1 = A B C + A B C =A B

loop2 = A B C + A B C = A C

loop3 = A B C + A B C = B C

A B C Y

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

Karnaugh Maps

FOUR-VARIABLE K-MAP

 The map for Boolean functions of four binary variables (w, x, y, z) is shown

in Fig. 8 .In Fig. 8(a) are listed the 16 minterms and the squares assigned to each. In

Fig.8(b), the map is redrawn to show the relationship between the squares and the

four variables.

Karnaugh Maps

Fig(8) four variables

Karnaugh Maps

Ex //Simplify the Boolean function

F (w, x, y, z) = ∑(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)

w x y z F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 0

1 0 1 1 0

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Karnaugh Maps

loop1= w x y z + w x y z + w x y z + w x y z + w x y z + w x y z + w x y z +w x yz

= y

loop2= w x y z + w x y z + w x y z + w x y z = w z

loop3 = w x y z + w x y z + w x y z + w x y z = x z

 f = y + w z + x z

Ex // Simplify the Boolean function:

F = A B C + B C D + A BCD + A B C

 f = A B C(D+D) + B C D(A +A)+ A B C D + A B C (D + D)

 f = A B C D + A B C D +A B C D + A B C D + A B C D + A B C D + A B C D

Karnaugh Maps

A B C D F

0 0 0 0 1

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 1

0 1 1 1 0

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 0

1 1 0 0 0

1 1 0 1 0

1 1 1 0 0

1 1 1 1 0

Karnaugh Maps

loop1=A B C D+ A B C D+A B C D + A B C D = B C

loop2= A B C D+ A B C D+A B C D + A B C D= BD

loop3 = A B C D+ A B C D =ACD

 f= B C+ B D +A C D

Karnaugh Maps

Don’t-care conditions:

In most applications, we simply don’t care what value is assumed by the

function for the unspecified minterms. For this reason, it is customary to call the

unspecified minterms of a function don’t-care conditions. These don’t-care

conditions can be used on a map to provide further simplification of the Boolean

expression.

A don’t-care minterm is a combination of variables whose logical value is not

specified. Such a minterm cannot be marked with a 1 in the map, because it would

require that the function always be a 1 for such a combination. Likewise, putting a

0 on the square requires the function to be 0. To distinguish the don’t-care condition

from 1’s and 0’s, an X is used. Thus, an X inside a square in the map indicates that

we don’t care whether the value of 0 or 1 is assigned to F for the particular minterm.

In choosing adjacent squares to simplify the function in a map, the don’t-care

minterms may be assumed to be either 0 or 1. When simplifying the function, we

can choose to include each don’t-care minterm with either the 1’s or the 0’s,

depending on which combination gives the simplest expression.

Ex// Simplify the Boolean function

F (w, x, y, z) = ∑(1, 3, 7, 11, 15)

which has the don’t-care conditions

d (w, x, y, z) = ∑(0, 2, 5)

Karnaugh Maps

	Lecture One
	Number systems and operations
	Lecture 3 Logic Gates.pdf
	Logic Gates

